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In this paper, we define different kinds of singular systems on Lie groups and we analyze some of them.
Furthermore, we state sufficient conditions for a general nonlinear singular system defined on amanifold
to be equivalent by diffeomorphism to one of these models. Some examples are computed.
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1. Introduction

The purpose of this paper is to design models of nonlinear
singular systems by means of the so-called linear systems on
Lie groups, which are actually nonlinear, despite their name that
comes from their similarity with linear systems in Rn.

More accurately a control-affine system on a Lie group is said
to be linear if its drift is an infinitesimal automorphism (see Bour-
baki [1]), called linear vector field in a geometric control context,
and the controlled fields are right (or left)-invariant. Thanks to the
Equivalence Theorem of [2] these systems appear as models for a
large class of nonlinear systems: the finite ones, that is the systems
whose generated Lie algebra is finite dimensional. To be more
precise the Equivalence Theorem states that (under some technical
assumptions) a finite system is equivalent by diffeomorphism to a
linear system on a Lie group or a homogeneous space.

It is worthwhile to notice that in order to state the Equivalence
Theorem in its full generality it is necessary to extend the definition
of linear systems to homogeneous spaces.

On the other hand linear and nonlinear singular equations and
control systems have attracted a lot of interest under different
names: differential–algebraic equations (DAE) or systems, descrip-
tors, degenerate systems. Good accounts of the linear theory can be
found in the books [3,4]. The more recent book [5] deals also with
nonlinear DAE, analyzed through linearization (for this approach
see also [6,7]) and contains a detailed bibliography. Our approach is
more geometric (see for instance [8–11]) but opposite towhat hap-
pens for general nonlinear differential–algebraic systems defined
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on manifolds, the Lie structure allows us to get a natural splitting
into the differential and algebraic parts, which is moreover global.
The counterpart is that we deal with systems that generate a finite
dimensional Lie algebra only.

Our goal to design models of nonlinear singular systems is
reached in three steps:

1. The first one consists in defining models of singular linear
systems on a Lie group G, that is systems of the kind

Eg .ġ = Xg + Yg +

m∑
j=1

ujY j
g

where X is a linear vector field, Y and the Y js are right-
invariant, and Eg is a noninvertible linear map defined on
each tangent space TgG. They were introduced in [12] in the
case where E is a derivation of the Lie algebra g of G and
Eg = TRg .E.TRg−1 .

2. In a second step we should analyze these models. This
analysis is not essential to state an equivalence theorem
but it validates the interest of the models. They would be
worthless if their analysis was not possible.

3. To finishwe have to state and prove the equivalence of finite
singular systems with our models after having checked that
can be extended to homogeneous spaces.

The first step is realized in Section 3, after having recalled the
basic definitions in Section 2. It is natural to require that the
linear mapping Eg that acts on the tangent space TgG be related
to the Lie structure. This leads to Eg = TRg .E.TRg−1 where E is
a derivation or a noninvertible morphism of the Lie algebra g of
G. Another possibility is to define a singular linear system using a
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noninvertible Lie group morphism θ , that is to consider systems of
the kind

Tgθ.ġ = Xθ (g) + Yθ (g) +

m∑
j=1

ujY
j
θ (g).

These systems are quite different from the previous ones, in partic-
ular the usual existence and uniqueness of the solutions does not
hold.

Section 4 is devoted to the analysis of singular systems defined
by Lie algebra morphisms. It is shown that under some additional
(but natural) assumptions these systems can be analyzed, that is
decomposed into a nonsingular part and an algebraic one. As well
the additional assumptions than the analysis itself are close to the
usual ones for singular linear systems inRn. The analysis of singular
systems defined by a derivation has been previously made in [13]
and the one of singular systems defined by Lie groupmorphisms is
postponed to Section 7.

The third step is done in Section 6 where the equivalence
theorem is stated. Its proof, that makes use of the Equivalence
Theorem of [2] recalled in the Appendix, follows the technical
Section 5 where it is shown that the models defined by derivation
or morphism can be extended to homogeneous spaces.

Section 7 deals with the group morphism case. As explained
above the reasons to deal with these systems in a different part are
that on the one hand their analysis is very easy but on the other one
the proof of the equivalence Theorem is quite different for them.
They have also the drawback that neither the existence nor the
uniqueness of the solutions are guaranteed.

Two examples are presented in Section 8. The first one is a de-
composition into thehorizontal and the vertical part of amorphism
model on the 2-dimensional affine group. In the second example an
algebraic system on the Heisenberg group is solved.

2. Basic definitions and notations

In this section the definition of linear vector fields and some of
their properties are recalled. More details can be found in [2] (see
also [14]).

Let G be a connected Lie group and g its Lie algebra (the set of
right-invariant vector fields, identified with the tangent space at
the identity).

The right (resp. left) translation by g ∈ G is denoted by Rg
(resp. Lg ) and its differential at the point h by ThRg , or by TRg if no
confusion can happen (resp. ThLg or TLg ).

A vector field on G is said to be linear if its flow is a one parameter
group of automorphisms. Notice that a linear vector field is conse-
quently analytic and complete.

The following characterization will be useful in the sequel.

Characterization of linear vector fields
Let X be a vector field on a connected Lie group G. The following

conditions are equivalent:

1. X is linear;
2. X belongs to the normalizer of g in the algebra Vω(G) of

analytic vector fields of G, that is

∀Y ∈ g [X , Y ] ∈ g, (1)

and verifies X (e) = 0;
3. X verifies

∀g, g ′
∈ G Xgg ′ = TLg .Xg ′ + TRg ′ .Xg (2)

According to (1) one can associate to a given linear vector field
X the derivation D of g defined by:

∀Y ∈ g DY = −[X , Y ],

that is D = −ad(X ). The minus sign in this definition comes from
the formula [Ax, b] = −Ab in Rn. It also enables to avoid a minus
sign in the formula:

∀Y ∈ g, ∀t ∈ R ϕt (exp Y ) = exp(etDY ),

where (ϕt )t∈R stands for the flow of X .
An affine vector field is an element of the normalizer N of g in

Vω(G), that is

N = normVω(G)g = {L ∈ Vω(G); ∀Y ∈ g, [L, Y ] ∈ g},

so that an affine vector field is linear if and only if it vanishes at the
identity.

It can be shown (see [2]) that an affine vector field can be
uniquely decomposed into a sum L = X + Y where X is linear
and Y right-invariant.

Let X be a linear vector field and F its translation to the tangent
space at the identity, that is Fg = TRg−1 .Xg for all g ∈ G. The
following formulas are computed in [15].

1. The differential of F at the point g is:

TgF = (D + ad(Fg )) ◦ TRg−1 . (3)

2. For g = exp(tY ) one has

F (exp tY ) =

+∞∑
k=1

(−1)k−1 t
k

k!
adk−1(Y )DY . (4)

Let us consider now the nonlinear control system on amanifold
M:

ẋ =
d
dt

x = f (x) +

m∑
j=1

ujgj(x),

where f and the gj’s are smooth vector fields, and u = (u1, . . . , um)
belongs toRm. LetL be the Lie algebra of vector fields generated by
f and the gjs. The rank of the system at a point x is the dimension
of {ξ (x); ξ ∈ L}. The system satisfies the rank condition if
this rank is equal to the dimension of M at all points, that is if
{ξ (x); ξ ∈ L} = TxM for all x ∈ M .

The admissible inputs are the locally essentially bounded func-
tions from [0, +∞[ to Rm.

3. Different types of singular systems on Lie groups

Let us consider a linear system on a Lie group G. It has the
following form:

ġ = Xg + Yg +

m∑
j=1

ujY j
g , (5)

whereX is a linear field on G and Y and the Y j’s are right-invariant.
The drift vector field is here the affine vector field X + Y and the
system is right-invariant if X = 0.

This system becomes a singular one if some noninvertible map-
ping is applied to ġ . In the paper [12] the authors consider a
derivation E of the Lie algebra g of G (identified with the tangent
space TeG at the identity) and define the singular system as

Eg .ġ = Xg + Yg +

m∑
j=1

ujY j
g , (6)

where Eg = TRg ◦ E ◦ TRg−1 .
Another possibility is to replace the derivation E by a noninvert-

ible Lie algebra morphism P , that is to consider the model

Pg .ġ = Xg + Yg +

m∑
j=1

ujY j
g , (7)
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where Pg = TRg ◦P◦TRg−1 . Thismodel, referred to as themorphism
one, is shortly analyzed in the next section.

Remarks.

1. A natural generalization of the previous models would con-
sist of replacing E by any noninvertible linear operator A of g.
We would obtain

Ag .ġ = Xg + Yg +

m∑
j=1

ujY j
g

where Ag = TRg ◦A◦TRg−1 . This singular controlled equation
iswell defined but it has several drawbacks, themain one be-
ing the difficulty to analyze this model due to the lack of nice
decomposition of g. The necessity of such a decomposition
will appear clearly in the next section.

2. Another temptation is to define a singular model close to
the morphism one, but through a Lie group morphism θ .
More accurately, let us define a singular linear system in the
following way:

Tgθ.ġ = Xθ (g) + Yθ (g) +

m∑
j=1

ujY
j
θ (g), (8)

where θ is a noninvertible morphism of the Lie group G. This
system has the advantage to be easy to analyze but has an
important default, the lack of uniqueness of the trajectories.
It is nevertheless considered in Section 7.

4. A short analysis of the morphismmodel

The title of this section is due to the fact that the analysis of
the morphism model is not made here in its full generality, which
would be beyond the scope of this paper. It is however sufficient to
show the interest of the model and to enlight the difficulties that
can be encountered.

4.1. Horizontal and vertical decomposition

Notation: The complexification of the Lie algebra g (resp. of a
subspace h of g) is denoted gC (resp. hC). Let

g = g0 ⊕

⨁
λ̸=0

gλ

be the decomposition of g according to the generalized eigenspaces
of the Lie algebra morphism P (whenever the eigenvalue λ is not
real gλ is the real part of gCλ ⊕ gC

λ
).

Lemma 1. Let v = g0 and h =
⨁

λ̸=0gλ. Then v is an ideal, h is a
subalgebra of g, and they verify v ⊕ h = g.

Proof.

1. Let us first prove that for any eigenvalues α and β of P hold
the inclusion

[gCα , gCβ ] ⊂ gCαβ ,

with the usual convention that gCαβ is equal to {0} if αβ is
not an eigenvalue of P . Let X1, . . . , Xl (resp. Y1, . . . , Yk) be
a basis of gCα (resp. of gCβ ) such that PXi = αXi + ϵi−1Xi−1
where ϵi−1 = 0,1 and with the convention Xi = 0 if i ≤ 0
(resp. PYj = βYj + ηj−1Yj−1 where ηj−1 = 0,1 and with the
convention Yj = 0 if J ≤ 0). Then

(P − αβI)[Xi, Yj] = [αXi + ϵi−1Xi−1, βYj + ηj−1Yj−1]

−αβ[Xi, Yj]

= αηj−1[Xi, Yj−1] + βϵi−1[Xi−1, Yj]

+ϵi−1ηj−1[Xi−1, Yj−1].

From that equality it is clear that (P − αβI)[X1, Y1] = 0.
Let us assume that there exists a positive integerm such that
(P − αβI)m[Xi, Yj] = 0 as soon as i + j ≤ r where r ≥ 2, and
let i, j such that i + j = r + 1. Then

(P − αβI)m+1
[Xi, Yj] =

(P − αβI)m(αηj−1[Xi, Yj−1] + βϵi−1[Xi−1, Yj]

+ ϵi−1ηj−1[Xi−1, Yj−1]) = 0,

which proves the result.
2. The previous complex inclusion implies that for any eigen-

values α and β:

[gα, gβ ] = [(gCα + gCα ) ∩ g, (gCβ + gC
β
) ∩ g]

⊂ [gCα + gCα , gCβ + gC
β
] ∩ g ⊂ gαβ + gαβ .

3. The conclusion of the lemma is an immediate consequence
of this inclusion. ■

According to Lemma 1 we can define two connected subgroups
ofG, denoted byV andH , respectively generated by the Lie algebras
v and h. The subgroup V is normal in G but not the subgroup H in
general.

Some difficulties
In order to go further some decomposition of the group G with

respect to V and H is needed. It is at least necessary to be able to
define the quotient G/V , hence that V be a closed subgroup of G.
But this condition is not guaranteed ‘‘à priori’’. For instance if G is
the 2-dimensional torus T2, and P is a rank 1 linear map whose
kernel has an irrational slope, then the subgroup V is dense in T2.
Moreover the decomposition g = hv where g ∈ G, h ∈ H and
v ∈ V need not be unique in general.

However the subgroups V and H are closed, and G is equal to
the semidirect product V ⋊ H as soon as G is simply connected,
as proved in [1] (Chap. III, §6, no6) (with notations opposite to
Bourbaki’s ones). In that case the decomposition g = hv exists and
is unique for all g ∈ G.

On the other hand, in order to decompose the system as in the
next Proposition 1, it is necessary to project the linear vector field
X to the quotients G/V and G/H , that is on H and V . Since V and H
are connected, and according to [2], this is possible if and only if the
Lie algebras v and h are invariant under the derivationD associated
to the linear field X . In that case X is tangent to V and H .

Consequently we make in this section the following assump-
tions:

1. The group G is simply connected hence isomorphic to the
semidirect product V ⋊ H .

2. The Lie algebras h and v are D-invariant.

Under these assumptions we can define two projected systems,
the first one (ΣH ) on H , and the second one (ΣV ) on V , by:

(ΣH ) : Ph.ḣ = Xh + YH
h +

m∑
j=1

ujY
j,H
h , (9)

(ΣV ) : Pv.v̇ = Xv + Y V
v +

m∑
j=1

ujY j,V
v , (10)

where if Z ∈ g then ZH (resp. ZV ) stands for the projection of Z onto
h (resp. onto v).

Proposition 1. Let u(t) be an admissible input, let g(t) be an
absolutely continuous curve in G and let g(t) = h(t)v(t) be its
decomposition into the horizontal part h(t) and the vertical one v(t).
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Then g(t) is a solution of the singular system (7) if and only if the
pair (h(t), v(t)) is solution of the system:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ph.ḣ = Xh + YH
h +

m∑
j=1

ujY
j,H
h

Phvh−1 .(TLh.TRh−1 ).v̇ = TLh.TRh−1 .Xv + Y V
hvh−1 +

m∑
j=1

ujY
j,V
hvh−1 .

Remark. The first of these equations is (ΣH ), but since it depends
on h(t), the second one is different from (ΣV ) though it evolves on
V . We will later assume that the elements of V and H commute.
The second equation will be exactly (ΣV ) in that case.

Proof. Let g ∈ G and let g = hv be its decomposition in h ∈ H and
v ∈ V .

1. According to Formula (2) the linear vector field at g can be
decomposed as:

Xg = Xhv = TRv.Xh + TLh.Xv = TRv.Xh

+ TRh.(TLh.TRh−1 .Xv).

Under the assumption that h and v are D-invariant, TRv.Xh

belongs to TRv(ThH) and TRh.(TLh.TRh−1 .Xv) belongs to TRh

(TRhvh−1v) = TRh(Thvh−1V ). The second claim deserves to be
proved: let X ∈ v, then

TLh.TRh−1 .Xv = TRhvh−1 .(Ad(h)).X

If h = exp(Z), with Z ∈ h, then Ad(h)X = Ad(exp(Z))X =

ead(Z)X belongs to v because v is an ideal. SinceH is connected
Ad(h).X ∈ v for all h ∈ H . Moreover hvh−1 belongs to the
normal subgroup V .

2. Let Y ∈ g. It can be written as Y = YH
+ Y V where YH

∈ h

and Y V
∈ v. Then

Yg = TRhv(YH
+ Y V ) = TRv.TRh.YH

+ TRh.TRhvh−1 .Y V

= TRv.YH
h + TRh.Y V

hvh−1 .

Again the first term TRv.YH
h belongs to TRv(ThH) and the

second one TRh.Y V
hvh−1 to TRh(TRhvh−1v) = TRh(Thvh−1V ).

3. Let us now consider the restrictingmap P . At the point g it is:

Pg = TRg .P .TRg−1 = TRv.TRh.P .TRh−1 .TRv−1 .

Consequently

Pg .ġ = TRv.TRh.P .TRh−1 .TRv−1 (TRv.ḣ + TLh.v̇)
= TRv.Ph.ḣ + TRh.TRhvh−1 .P .TRhv−1h−1 .(TLh.TRh−1 )v̇
= TRv.Ph.ḣ + TRh.Phvh−1 .(TLh.TRh−1 )v̇,

where as previously the first term TRv.Ph.ḣ belongs to TRv

(ThH) and the second one TRh.Phvh−1 .(TLh.TRh−1 )v̇ to TRh

(TRhvh−1v) = TRh(Thvh−1V ).

Let g(t) = h(t)v(t), where h(t) (resp. v(t)) is an absolutely
continuous curve in H (resp. in V ). The equality Pg .ġ = Xg + Yg +∑m

j=1ujY
j
g writes (almost everywhere)

TRv.Ph.ḣ + TRh.Phvh−1 .(TLh.TRh−1 ).v̇
= TRv.Xh + TRh.(TLh.TRh−1 .Xv) + TRv.YH

h + TRh.Y V
hvh−1

+

m∑
j=1

uj(TRv.Y
j,H
h + TRh.Y

j,V
hvh−1 ),

and is satisfied if and only if⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

TRv.Ph.ḣ = TRv.Xh + TRv.YH
+

m∑
j=1

ujTRv.Y
j,H
h

TRh.Phvh−1 .(TLh.TRh−1 ).v̇ = TRh.(TLh.TRh−1 .Xv) + TRh.Y V
hvh−1

+

m∑
j=1

ujTRh.Y
j,V
hvh−1 ,

that is if and only if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ph.ḣ = Xh + YH

h +

m∑
j=1

ujY
j,H
h

Phvh−1 .(TLh.TRh−1 ).v̇ = TLh.TRh−1 .Xv + Y V
hvh−1 +

m∑
j=1

ujY
j,V
hvh−1 . ■

4.2. Analysis of the horizontal system

Let us denote by Q the inverse of the restriction of P to h. The
horizontal system (9):

(ΣH ) : Ph.ḣ = Xh + YH
h +

m∑
j=1

ujY
j,H
h ,

is equivalent to (with Qh = TRh ◦ Q ◦ TRh−1 ):

ḣ = Qh.Xh + Qh.YH
h +

m∑
j=1

ujQh.Y
j,H
h . (11)

This is a well defined nonlinear system on H , but not a linear one
in general. The vector fields

h ↦−→ Qh.Y
j,H
h = TRh.Q .TRh−1 .(TRh.Y j,H ) = TRh.(Q .Y j,H )

are clearly right-invariant, but the vector field h ↦−→ Qh.Xh is not
linear in general.

Indeed, let us denote this vector field by QX . Since QX (e) = 0
its differential Te(QX ) at e is well defined and for any Y ∈ g we
have [Y ,QX ](e) = Te(QX ).Y .

Thanks to Formula (4) recalled in Section 2 a standard compu-
tation left to the reader shows that Te(QX ) = QD. If QX was linear,
then QD would be a derivation, but

QD[X, Y ] = [QDX,QY ] + [QX,QDY ]

̸= [QDX, Y ] + [X,QDY ] in general.

4.3. Analysis of the vertical system

The analysis of the vertical system (10) is much more difficult
and here we restrict ourselves to the case where the elements of H
and V commute. Then the vertical system becomes

(ΣV ) : Pv.v̇ = Xv + Y V
v +

m∑
j=1

ujY j,V
v .

It is analyzed under some additional assumptions. Nevertheless
the computation of the solution that is exhibited below shows the
difficulties related to the nonlinearity of the equations.

The restriction of P to v is nilpotent, we will denote it by N in
order to emphasize this fundamental feature, andwewillmake the
following assumptions:

(i) The index of N is 2 (that is N ̸= 0 and N2
= 0).

(ii) The derivationD associated toX is invertible (which implies
that v is nilpotent).

(iii) There exists an invertible endomorphism D̃ of g such that
ND = D̃N .
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Remark about the assumptions (ii) and (iii). Consider the singular
linear system in Rn:

Nẋ = Ax + Bu(t),

where N is nilpotent. In [4] the classical algorithm for solving such a
system is presented in the case where A = I . Actually it can be very
easily extended to A ̸= I if A is invertible and if there exists another
invertible matrix Ã such that NA = ÃN. These assumptions are exactly
(ii) and (iii). Moreover the invertibility of A guarantees the uniqueness
of the solutions.

Finally our main restriction is about the index of N.
Let v(t) be a solution of Nv.v̇ = Xv + Yv(t), where Yv(t) stands

for Y V
v +

∑m
j=1uj(t)Y j,V

v , for some admissible input u(t). We can
multiply both sides by Nv , and since N2

v = 0 we get 0 = Nv(Xv +

Yv(t)), or after translation:

0 = NF (v) + NY (t) (12)

(Recall that F (v) = TRv−1 .Xv). Assuming the control u(t) to be
derivable, and according to Formula (3) of Section 2, we get by
differentiation:

0 = N(D + ad(Fv))TRv−1 .v̇ + N.Ẏ (t)
= D̃.N.TRv−1 .v̇ + [N.Fv,N.TRv−1 .v̇] + N.Ẏ (t)
= D̃.TRv−1 .Nv.v̇ + [N.Fv, TRv−1 .Nv.v̇] + N.Ẏ (t)
= D̃.TRv−1 (Xv + Yv(t)) + [N.Fv, TRv−1 (Xv + Yv(t))] + N.Ẏ (t)
= (̃D + ad(N.Fv))(Fv + Y (t)) + N.Ẏ (t).

Let

Θ(v, t) = (̃D + ad(N.Fv))(Fv + Y (t)) + N.Ẏ (t).

If v = exp(sZ), then d
ds| s=0

F (exp(sZ)) = DZ , and taking into account
F (exp(0Z)) = 0, we get:
d
ds| s=0

Θ(exp(sZ), t) = (̃D − ad(Y (t))N)(DZ).

Consequently the differential of Θ with respect to v at the point e
is equal to:
∂

∂v
Θ(e, t) = (̃D − ad(Y (t))N) ◦ D.

Since D and D̃ are invertible, this differential is invertible for small
Y (t). In particular if Y = 0 then Y (t) =

∑m
j=1uj(t)Y j,V is small as

soon as u(t) is small.

Conclusion. If Y (t) is small enough, then there is a neighborhood of
e in which v(t) is uniquely determined by the nondifferential implicit
equation:

Θ(v, t) = (̃D + ad(N.Fv))(Fv + Y (t)) + NẎ (t) = 0. (13)

Initial conditions. The previous formulas show also that not all

points v of V can be initial conditions. Actually let B be the image
of Y V

+
∑

jujY j,V and let K be the kernel of N . The equality (12),
0 = NF (v) + NY (t), is equivalent to F (v) + Y (t) ∈ K and implies
F (v) ∈ B + K .

Finally an initial condition v0 should belong to F−1(B + K ).

Conclusion. The computations done in this section show that
under natural and usual assumptions the singular systems under
consideration can be analyzed, that is decomposed into a horizon-
tal system and a vertical one (Proposition 1), and that the vertical
system, which is actually algebraic, can be solved. The solution
is presented here for the index N = 2, but can certainly be
extended to any value ofN (with some technical difficulties). These
computations can be applied to practical cases as shown by two
examples of Section 8. This validates the interest of the Lie algebra
morphism model (the derivation model was analyzed in [13]).

5. Extension to homogeneous spaces

The purpose of this section is to extend the previous definitions
of singular systems to homogeneous spaces G/A (the set of left
cosets of A), where A is a closed subgroup ofG. Recall that according
to the Equivalence Theorem the systems whose generated Lie
algebra is finite dimensional are equivalent by diffeomorphism to
linear systems on a Lie group or homogeneous spaces. This is due to
the possible difference between the dimension of the state space
and the one of the generated Lie algebra, and makes the extension
to homogeneous spaces absolutely necessary.

Important remark.When considering a homogeneous space G/Awe
can always assume that G is simply connected and that the tangent
mapping Π∗ to the projection Π from G onto G/A is a Lie algebra
isomorphism, in other words that no projection of a nonzero right-
invariant vector field vanishes (see [2] for details). This assumption is
implicit in the sequel.

From [2] we know necessary and sufficient conditions for the
possibility to project the full linear system (5) onto G/A. Indeed
right-invariant vector fields can always be projected and it is
shown in [2] that a linear vector field X can be projected on G/A
if and only if the subgroup A is invariant under the flow of X . If
the subgroup A is connected this condition is equivalent to the
invariance of the Lie algebra a of A for the derivation D associated
to X .

To this condition we should add another one about the restrict-
ing map. Of course we should assume that the Lie algebra a of A
is invariant under the derivation E in the derivation case (resp. for
the morphism P in the morphism case), but this condition is not
sufficient in general.

Let Π stand for the projection of G onto G/A. The kernel of its
differential TgΠ at the point g is equal to the left translation TeLga
of a. Let E be any endomorphism of g and Eg = TRg ◦ E ◦ TRg−1 . In
order to correctly define an induced linearmapping on the tangent
space to G/A at the point gA it is necessary (and sufficient) that
TeLga be invariant under Eg . This condition is equivalent to:

∀g ∈ G a is invariant under Ad(g−1) ◦ E ◦ Ad(g) (14)

By differentiation this condition can be transformed into a con-
dition at the Lie algebra level, but both in the case of a derivation
and in that of a morphism these conditions are rather unnatural
and will not be stated here.

Let us rather consider the fact that E (resp. P) acts on g, viewed
as the set of right-invariant vector fields, as a derivation (resp. as a
morphism) by:

g ∈ G ↦−→ EgXg = (EX)g (resp. PgXg = (PX)g ) for any X ∈ g.

Let E be a smooth mapping on T (G/A) that preserves the fibers, is
linear on each of them, but is not invertible on at least one fiber.
In other words E is a morphism of the vector bundle T (G/A) that
induces the identity on G/A and whose restriction to TgAG/A is not
invertible for all gA. If E acts on Π∗g as a derivation (resp. as a
morphism), thenΠ∗g is invariant and E can be lifted to a derivation
or a morphism E of g defined by E = (Π∗)−1

◦E ◦Π∗. It is clear that
at each point gA, the linear mapping EgA is induced by Eg .

In summary a singular linear system on a homogeneous space
G/Awill be defined by:

Ep.ṗ = L(p) +

m∑
j=1

ujY j (15)

where L is an affine vector field on G/A (the projection of X + Y ),
the Y js are projections of right-invariant vector fields, and the
restricting map E is defined as above.
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6. Equivalence

In this section we are interested in finding conditions for a sin-
gular control system on a connected manifold M to be equivalent
by diffeomorphism to a singular control system on a Lie group or a
homogeneous space. For this purpose we will use the equivalence
theorem of [2], which is recalled in the appendix.

But before trying to state such conditions we should define
what a nonlinear singular control system on a manifold M is. The
natural way is to start from a general control-affine system on M
referred to as the full control system on M:

ẋ =
d
dt

x = f (x) +

m∑
j=1

ujgj(x), (16)

where f and the gj’s are smooth vector fields on M , and u =

(u1, . . . , um) belongs to Rm. In order to obtain a singular system
we should apply some restricting mapping to d

dt x.
For this purpose let E be a morphism of the vector bundle TM

that induces the identity on M and whose restriction Ex to TxM is
not invertible for all x. We get the model

Ex.ẋ = f (x) +

m∑
j=1

ujgj(x). (17)

Some necessary conditions

1. The Lie algebra generated by a system (6) or (7) is always
finite dimensional, since it is included in R(X + Y ) ⊕ g.
A necessary condition is consequently that the Lie algebra
generated by f and the gj’s be finite dimensional.

2. In order to apply the equivalence theorem, it is also neces-
sary that the full linear system satisfies the rank condition.

3. Let us consider the vector bundle morphism E . It acts on
the vector fields of M in a standard way: if X is a smooth
vector field on M , then E.X is the vector field defined by
(E.X)x = Ex.Xx. It is therefore meaningful to check if E acts
as a derivation, or as a morphism, on some algebra of vector
fields of M .

Notations. The Lie algebra generated by f and the gj’s will be
denoted by L. We will also have to deal with the so-called zero-
time ideal of L, that is the ideal L0 of L generated by the gj’s.

Theorem 1. The system (17) is assumed to satisfy the following
conditions:

1. The vector fields f , g1, . . . , gm are complete.
2. The Lie algebraL generated by f and the gj’s is finite dimensional

and satisfies the rank condition, i.e. its rank is equal to n =

dim(M) at all points.
3. The vector bundlemorphism E acts onL0 if rank (L0) = n (resp.

onL if rank (L0) = n−1) as a derivation (resp. as amorphism).

Then the system is equivalent by diffeomorphism to a singular system
of the kind (6) (resp. of the kind (7)) on a Lie group or to the projection
of such a system on a homogeneous space.

If the first assumption is not satisfied, the result holds locally.

Proof. The first two conditions imply that the rank of L0 is
constant, equal to the rank of L that is dim(M) = n, or to n − 1
(see [2]).

Let G be the simply connected Lie group whose Lie algebra g is
isomorphic to L0 if rank (L0) = n and to L if rank (L0) = n − 1.
According to the equivalence theorem of [2] the manifold M is
diffeomorphic to a homogeneous space G/A of G and, if we denote
this diffeomorphism by Φ , we have:

1. If rank (L0) = n then the tangent mapping Φ∗ is an isomor-
phism from L0 onto g and the full system (16) is equivalent
to a linear one on G/A through the diffeomorphism Φ .

2. If rank (L0) = n − 1 then the tangent mapping Φ∗ is an
isomorphism from L onto g and the full system (16) is equiv-
alent to an invariant one on G/A through the diffeomorphism
Φ .

In both cases we can define E on T (G/A) by E = Φ∗ ◦ E ◦ (Φ∗)−1.
Since Φ∗ is an isomorphism from L0 or L onto Π∗g it is clear that
E is a derivation of Π∗g if E is a derivation, and a morphism of Π∗g
if E is a morphism.

Let L = Φ∗f and Yj = Φ∗gj for j = 1, . . . ,m. According to
Section 5 the system (17) is diffeomorphic to the singular linear
system on G/A:

Ep.ṗ = L(p) +

m∑
j=1

ujYj. ■

Corollary 1. Under the same assumptions, if moreover M is simply
connected and dim(L0) = dim(M) (resp. dim(L) = dim(M)), then
the system (16) is diffeomorphic to a singular linear system (resp. a
singular right-invariant system) on a Lie group.

If M is not simply connected, then the same statement holds
locally.

Proof. The assumptions imply dim(M) = dim(G). The subgroup A
is consequently discrete, hence reduced to the identity because of
the simple connectedness ofM . ■

7. The group morphism case

We consider in this section the singular system (8) defined
through a Lie group morphism θ , that is:

Tgθ.ġ = Xθ (g) + Yθ (g) +

m∑
j=1

ujY
j
θ (g) (18)

where θ is a noninvertible morphism of the Lie group G.
As explained in the introduction these systems are rather dif-

ferent from the previous ones. Their analysis is very easy (but they
have the drawback that neither the existence nor the uniqueness
of the solutions are guaranteed) and the proof of the equivalence
Theorem is quite different for them.

Since Tgθ.ġ =
d
dt θ (g) we see that if x(t) is a trajectory of (18)

then θ (x(t)) is a trajectory, contained in the image of θ , of the
nonsingular linear system:

d
dt

ġ = Xg + Yg +

m∑
j=1

ujY j
g . (19)

Conversely let y(t) be such a trajectory. Then any absolutely con-
tinuous curve x(t) such that θ (x(t)) = y(t) is solution of (18). It is
clear that for a given initial point x0 the solution is not unique.

The defaults of this system appear here clearly.

1. The singular system (18) has solutions only if the system
(19) has solutions contained in the image of θ .

2. In that case the solutions of (18) are not unique.

Remark. As well as in the other cases such a system can obviously
be defined on a homogeneous space.

Let us consider again the full nonlinear system (16) defined on
a manifold M . Let T be a smooth mapping from M to M which is
not a diffeomorphism. We can define the singular system

TxT .ẋ = f (T (x)) +

m∑
j=1

ujgj(T (x)). (20)
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which is clearly a candidate for equivalence with a system defined
by Eq. (18) on a Lie group, or its projection on a homogeneous
space.

If the mapping T is equivalent to the projection on G/A of a Lie
groupmorphism, then its tangent mapping should apply elements
of L0 (resp. L) to elements of the same algebra L0 (resp. L) (the
notations are the ones of the previous section). However T is
assumed to not be a diffeomorphism so that it cannot be asserted
that vector fields are related to the gj’s (and to f if necessary)
through T , and we have to make the following assumption.

AssumptionA. Each gj (and also f if rank (L0) = n−1) is related by
T to a vector field onM denoted by T∗gj (resp. by T∗f ) that belongs
to L0 (to L if rank (L0) = n − 1).

If we denote by exp(tgj) the flow of gj this means that
T (exp(tgj)(x)) is a trajectory of T∗gj for all x ∈ M .

Theorem 2. The system (20) is assumed to satisfy the following
conditions:

1. The vector fields f , g1, . . . , gm are complete.
2. The Lie algebraL generated by f and the gj’s is finite dimensional

and satisfies the rank condition, i.e. its rank is equal to n =

dim(M) at all points.
3. Assumption A is satisfied.

Then the system is equivalent by diffeomorphism to a singular system
of the kind (18) on a Lie group or a homogeneous space.

If the first assumption is not satisfied, the result holds locally.

Proof. The beginning of the proof is the same as the one of
Theorem 1.

Then the first thing to notice is that Assumption A extends to
all vector fields of L0 (resp. of L if rank (L0) = n − 1), that is for
all X ∈ L0 there exists a T -related vector field T∗X on M and this
vector field belongs to L0 (resp. to L); the mapping T∗ is moreover
a Lie algebra morphism of L (resp. L0) (see [16]), Theorem (7.9)).

We also know that L0 (resp. L) is isomorphic to the Lie algebra
g of the group G, via a Lie algebra isomorphism Ψ that verifies
Φ∗ = Π∗ ◦ Ψ where Π stands for the projection from G onto
G/A (recall that Π∗ is a Lie algebra isomorphism). Consequently
we can define on g the morphism P = Ψ ◦ T∗ ◦ Ψ −1. Since G is
simply connected there exists a group morphism θ on G such that
Teθ = P . Notice that we do not know ‘‘à priori’’ if the subgroup A is
θ-invariant.

Let us denote by Θ = Φ ◦ T ◦ Φ−1 the image of T by Φ . It is a
smooth mapping from G/A to G/A and we are left to show that for
all g ∈ G:

θ (g)A = Θ(gA).

It is enough to show this equality for g = exp(Z) and for all Z ∈ g.
Since L0 (resp. L) is isomorphic to g let Z = Ψ (ζ ), and let x0 ∈ M
the point that verifies Φ(x0) = A. We get:

θ (exp(Z))A = exp(P .Z)A = exp(Ψ .T∗ζ )A = exp(Φ∗T∗ζ )(A)
= Φ(exp(T∗ζ )(x0)) = Φ ◦ T (exp(ζ )(x0))
= Θ(Φ(exp(ζ )(x0))) = Θ(exp(Z)A).

This shows that Θ is the mapping induced by θ onto G/A (hence
that A is θ-invariant) and proves that the system (20) is diffeomor-
phic to a singular system of the kind (18) on G/A. ■

8. Examples

8.1. Example 1

In this example we follow the reference [17]. Let G be the
connected component of the identity element in the 2-dimensional

affine group:

G = Aff+(2) =

{(
x y
0 1

)
: x > 0 and y ∈ R

}
.

Its Lie algebra g = aff(2) is solvable with basis

X =

(
1 0
0 0

)
, Y =

(
0 1
0 0

)
. The bracket rule is [X, Y ] = Y .

The Lie algebra is here identified with the set of left-invariant
vector fields.

In the basis (X, Y ) a derivation writes D =

(
0 0
a b

)
and the

corresponding linear vector field X at g ∈ G is given by Xg =(
0 a(x − 1) + by
0 0

)
.

Let P =

(
1 0
0 0

)
. It is a g-morphism that decomposes g into v =

Span {Y } and h = Span {X}. In order to apply the results of Section 4
it is necessary that v and h beD-invariant.We consequently choose
a = 0, and for simplicity b = 1.

With the controlled linear field B = αX+βY weget the singular
system:

ΣG : Pg (ġ) = Xg + uYg , where g =

(
x y
0 1

)
≡ (x, y).

An easy computation shows that the tangent mapping to the left
translation by g = (x, y) is the multiplication by x, so that Pg = P
for all g and the system becomes in coordinates:{
ẋ = uαx
0 = y + uβx

This is an algebraic–differential system. It is clear that x(t) is
(uniquely) determined by the first equation and y(t) by the second
one. Moreover it can be shown that the system is controllable in
any time T > 0 as soon as α, β ̸= 0.

Remark. In the previous example the restriction ofD to v is invert-
ible. Up to a Lie algebra automorphism the only other possibility
of noninvertible g-morphism is P =

(
0 0
1 0

)
. This morphism is

nilpotent hence v = g and the restriction of D to v cannot be
invertible, since no derivation of g is invertible. This results in the
loss of uniqueness of the solutions. Indeed for general derivation
and controlled vector field, we get the system:{
0 = uαx
ẋ = a(x − 1) + by + uβx

The first equation implies uα = 0, and the second one is under-
determined, whether α is either zero or not.

8.2. Example 2

We provide here an example of the computation of the vertical
system as described in Section 4.3.

The Heisenberg group is herein denoted by V , and (X, Y , Z)
stands for the usual basis of its Lie algebra v (hence [X, Y ] = Z).
Consider the derivationD and themorphismN defined in this basis
by:

D =

(1 0 0
c 1 0
e 0 2

)
and N =

(0 0 0
1 0 0
0 0 0

)
,

where c and e are arbitrary constants. It is easily checked that D
is an invertible derivation and N a nilpotent morphism of the Lie
algebra v.

According to [2] the linear vector field associated to D is

X = x
∂

∂x
+ (cx + y)

∂

∂y
+ (ex + 2z +

1
2
cx2)

∂

∂z
.
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Let us assume that the drift of the system is equal toX and that the
trace on V of the controlled vector fields is reduced to Y 1,V

= X .
The vertical system is then:

N v̇ = Xv + uX .

There are many choices of a derivation D̃ of v that satisfies ND =

D̃N , for instance D̃ = D. We choose the simplest one:

D̃ =

(1 0 0
0 1 0
0 0 2

)
.

In order to apply the results of Section 4.3 we need first compute
Fv = TRv−1 .Xv for all v ∈ V . The product in V being

(x′, y′, z ′) ∗ (x, y, z) = (x + x′, y + y′, z + z ′
+ xy′),

we get easily:

TRv−1 =

(1 0 0
0 1 0
0 −x 1

)
and Fv = TRv−1 .Xv

=

⎛⎜⎝ x
cx + y

ex + 2z −
1
2
cx2 − xy

⎞⎟⎠ .

From this we obtain:

NFv =

(0
x
0

)
, ad(NFv) =

( 0 0 0
0 0 0

−x 0 0

)
, and D̃ + ad(NFv)

=

( 1 0 0
0 1 0

−x 0 2

)
.

With the notations of Section 4.3, and for any derivable input uwe
have here Y (t) = (u, 0, 0)T , NẎ (t) = (0, u̇, 0)T , and

θ (v, t) =

( 1 0 0
0 1 0

−x 0 2

)⎛⎜⎝ x + u
cx + y

ex + 2z −
1
2
cx2 − xy

⎞⎟⎠+

(0
u̇
0

)

=

⎛⎜⎝ x + u
cx + y + u̇

−x(x + u) + 2(ex + 2z −
1
2
cx2 − xy)

⎞⎟⎠ ,

so that the implicit equation θ (v, t) = 0 is globally equivalent to
the algebraic relations:⎧⎪⎨⎪⎩

x(t) = −u(t)
y(t) = cu(t) − u̇

z(t) =
1
2
eu(t) +

1
2
u(t)u̇(t) −

1
4
cu2(t)

Notice that x(t), y(t) and z(t) are completely determined by these
relations, and that D is here invertible.
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Appendix

Recall that an affine vector field on a Lie group G is obtained by
adding a right-invariant vector field Y to a linear one X .

Let H be a closed subgroup of G. The projection of an affine
vector field X + Y onto the homogeneous space G/H (manifold of
left cosets of H) exists if and only if the subgroup H is X -invariant.

In that case it will be referred to as an affine vector field on the
homogeneous space G/H (see [2] for an intrinsic characterization).

The definition of a linear system is generalized in the following
way: a linear system on a Lie group or a homogeneous space is
defined as

ẋ = L(x) +

m∑
j=1

ujYj(x)

where L is an affine vector field and the Yj’s are right-invariant if the
state space is a Lie group, and projections of right-invariant vector
fields if the state space is a homogeneous space.

Let us consider the following smooth system, defined on a
connected manifoldM:

(S) ẋ = f (x) +

m∑
j=1

ujgj(x)

Equivalence Theorem ([2]). We assume the family {f , g1, . . . , gm}

to be transitive. Then the system (S) is diffeomorphic to a linear system
on a Lie group or a homogeneous space if and only if the vector
fields f , g1, . . . , gm are complete and generate a finite dimensional Lie
algebra.

More accurately, let G (resp. G0) be the connected and simply
connected Lie group whose Lie algebra is L (resp. L0). Under the
previous conditions the rank of L0 is constant, equal to dim(M) or
dim(M) − 1, and:

(i) if rank (L0) = dim(M), in particular if there exists one point
p0 ∈ M such that f (p0) = 0, then S is diffeomorphic to a linear
system on a homogeneous space G0/H of G0;

(ii) if rank (L0) = dim(M) − 1, then S is diffeomorphic to an
invariant system on a homogeneous space G/H of G.
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