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1. Introduction

In this paper, we are interested in time optimal problems
or linear systems on Lie groups. The classical linear control
ystem on the Euclidean space Rn is determined by the family
f differential equations,

Rn : ẋ(t) = Ax(t) + Bu(t), u ∈ U .

Above, A, B are matrices of appropriately order and u : [0, Tu] →

⊂ Rm is a control function. Here, U is a closed set with 0 in its
nterior.

It is well known that ΣRn serves as a model for beautiful
nd concrete applications, [1,2]. On the other hand, in [3,4], the
uthors introduce the notion of linear control system Σ = ΣG on

a connected Lie group G, as follows

(Σ) : ġ(t) = Xg(t) +

m∑
j=1

uj(t)Y
j
g(t), u ∈ U .

Here, X is a linear vector field, which means that its flow is a
1-parameter group of G-automorphisms. For any j = 1, . . . ,m, Y j

is a left invariant vector field on G. The class of the admissible
control U of is integrated by the measurable and locally bounded
functions defined on intervals of R with values on a closed subset
U of Rm.

∗ Corresponding author.
E-mail addresses: vayala@academicos.uta.cl (V. Ayala),

hilippe.jouan@univ-rouen.fr (P. Jouan), mtorreblancat@unsa.edu.pe
M.L. Torreblanca), guilherme.zsigmond@ufrr.br (G. Zsigmond).
1 Partially supported by Proyecto Fondecyt 1190142.
https://doi.org/10.1016/j.sysconle.2021.104956
0167-6911/© 2021 Elsevier B.V. All rights reserved.
We first observe that Σ is a generalization of ΣRn , from the
belian Lie group Rn to any connected Lie group G. In fact, the
low of the linear differential equation induced by the matrix A
of ΣRn satisfies etA ∈ Aut(Rn), t ∈ R, and, any column vector bj of
the cost matrix B = (b1b2...bm), induces an invariant vector field
on Rn.

Like in the Euclidean case, we are confident that Σ can be
used as a model for significant applications. There are reasons
to believe that. First, the Lie theory considers the symmetries of
differential equations. In particular, those coming from a physical
system are associated to a conservation law. This fact comes from
the Noether Theorem, which is central in theoretical and practical
application in Physics, [5]. Second, there exists a two-directional
relationship between linear and invariant control systems on Lie
groups. And, it is very well known the relevance of invariant
systems in applications, [1]. However, the main reason comes
from the Equivalence Theorem, [6] which roughly says that:

‘‘Any affine control systems ΣM on a differentiable manifold M

ΣM
·

: x(t) = f (x(t)) +

m∑
j=1

uj(t)g j(x(t)),

x(t) ∈ M, u ∈ U, x(0) = x0,

is equivalent to a linear control system on a Lie group G, or on a
homogeneous space of G, if, and only if the Lie algebra generated
by its vector fields, SpanLA

{
f , g1, . . . , gm

}
is finite-dimensional’’

Equivalent systems share the same topological, dynamical, and
algebraic properties. Furthermore, they have the same control
system behavior. Thus, it is possible to get information of any

arbitrary system ΣM that satisfies the finitude condition of the Lie
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lgebra, through a linear system Σ or via a homogeneous system
ΣG/H , where H is a closed subgroup of G.

This issue is one of the main reasons it is necessary to classify
G for different groups. Since 1999, several Mathematicians have
een working on this class of systems. In particular, there are
esults for the controllability property, and the existence, unique-
ess, and boundedness of the control sets, in all classes of groups:
belian, nilpotent, solvable, and semi-simple. For instance, in
efs. [7,8], we show an almost complete characterization of those
roperties on Lie groups of dimensions two and three. Further-
ore, there are results on Lie groups of arbitrary dimension.
or that, we refer the readers to [9–13], and [14]. We suggest
ef. [15] for some relationship between Σ with Sub-Riemannian
nd almost-Riemannian geometry.
Our goal here is to study the existence of time minimizers

hen the controls are unbounded and to provide some of their
haracteristics in all cases. To this aim, we use first the Pontryagin
aximum Principle, but also the second-order conditions, namely

he Goh and the Legendre–Clebsch conditions.
Let us denote by ∆ the subspace generated by the control

ectors that is ∆ = Span{Y 1, . . . , Ym
}. Theorem 1 states that if

here exists an ideal a of the Lie algebra of the group such that
⊂ a ⊂ ∆ + [∆, ∆] + D∆ (see Section 2 for the definition of D)

hen no time optimal extremal can exist for unbounded inputs.
It is also proven that a generic system on a semi-simple Lie

roup, with m ≥ 2, has no time minimizers for unbounded inputs
Theorem 2).

Examples illustrate these results on different kinds of Lie
roups, nilpotent, solvable, semi-simple compact and non-
ompact. Among other things these examples allow us to show
hat in the bounded case, the minimizers are not bang–bang in
eneral, due to the existence of singular extremals. Moreover, the
inimum time could not be reached in the unbounded case.
In Section 2, we state the basic definitions needed to define

linear control system on G. We characterize the notion of the
inear vector field through the normalizer of g and its associated
erivation. We then recall the Pontryagin Maximum Principle for
ime optimal problems.

The general results are stated in Section 3. We first follow [16]
o translate the system to the tangent space at the identity and
rite the associated Hamiltonian of Σ in g∗

× G as follows

(λ, g, u) = ⟨λ, F (g)⟩ +

m∑
j=1

uj⟨λ, Y j
⟩, where F (g) = TLg−1Xg .

Theorems 1 and 2 are stated and proven in this section.
Finally, Section 4 is devoted to examples: in the two dimen-

sional affine group Aff+(2), in the nilpotent Heisenberg group, and
in the semi-simple groups SO(3,R) and SL(2,R).

. Basic definitions and notations

More details about linear vector fields and linear systems can
e found in [6] and [14].

.1. Linear vector fields

Let G be a connected Lie group and g its Lie algebra (the set
f left-invariant vector fields, identified with the tangent space at
he identity). A vector field on G is said to be linear if its flow is a
ne-parameter group of automorphisms. The linear vector fields
re nothing other than the so-called infinitesimal automorphisms
n the Lie group literature (see [17] for instance). The following
haracterization is fundamental for our purpose.
2

A vector field X on a connected Lie group G is linear if and only
f it belongs to the normalizer of g in the algebra of analytic vector
ields of G, that is

Y ∈ g [X , Y ] ∈ g,

nd verifies X (e) = 0.
On account of this characterization, one can associate to a

inear vector field X the derivation D = −ad(X ) of the Lie algebra
g of G.

Inner derivation. In a case where the derivation is inner, that is
ad(X ) = ad(X) for some X ∈ g, the derivation is D = −ad(X), and
the linear field is:

Xg = TLg .X − TRg .X,

where Lg (resp. Rg ) stands for the left (resp. right) translation by g .
To simplify the theoretical computations, we will have to

translate vector fields to TeG, the tangent space at the identity, by
left translation. Along with the paper, the translation of a linear
field X will be denoted by:

Fg = TLg−1 .Xg ∈ TeG.

In the same way, consider the left-invariant vector field Y
(resp. the left-invariant one-form λ) identified with its value at
the identity Y = Ye ∈ TeG (resp. λ = λe ∈ T ∗

e G). Then at point g
we have Yg = TLg .Y (resp. λg = λ ◦ TLg−1 ).

2.2. Linear systems

Definition 1. A linear system on a connected n-dimensional Lie
group G is a controlled system

(Σ) ġ = Xg +

m∑
j=1

ujY j
g

where X is a linear vector field, and the Y j’s are left-invariant
ones. The control u = (u1, . . . , um) takes its values in a subset U
of Rm.

An input u being given (measurable and locally bounded), the
corresponding trajectory of (Σ) starting from the identity e will
be denoted by eu(t), and one starting from the point g by gu(t). A
straightforward computation shows that

gu(t) = ϕt (g)eu(t),

where (ϕt )t∈R stands for the flow of the linear vector field X
(see [14]).

2.3. The system Lie algebra and the rank condition

Let L0 be the smallest subalgebra of g that contains {Y 1, . . . ,

Ym
} and is D-invariant.

Proposition 1 ([14]). The system Lie algebra is

L = RX ⊕ L0.

The Lie Algebra Rank Condition (LARC) is satisfied by (Σ) if and only
if L0 = g.

Remark. The subalgebra L0 is an ideal of L called the zero-time
ideal in the literature (see [1] for instance).

About linear systems, it may also be convenient to consider the
so-called ad-rank condition. Let h be the subalgebra of g generated
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y ∆ = Span{Y 1, . . . , Ym
}. The ad-rank condition is:

+ Dh + D2h + · · · + Dn−1h = g.

In the case where h = ∆, in particular when m = 1, the
d-rank condition amounts to say that the linearized system
t the identity is controllable. More generally, the algebra h is
ncluded in the strong Lie saturate of the system (see [1] for these
otions), and under the ad-rank condition, the linearization of the
xtended system is controllable.

.4. The Pontryagin Maximum Principle for time optimal problems

We recall here the application of PMP to time optimal prob-
ems. More details can be found in [2] (see also [1,15]).

Consider the control system (Σ): ẋ = f (x)+
∑m

j=1 ujgj(x) where
and the gi’s are smooth vector fields on a manifold M and the
ontrol u = (u1, . . . , um) belongs to some subset U of Rm. The
associated Hamiltonian is

H(λx, x, u) = ⟨λx, f (x) +

m∑
j=1

ujgj(x)⟩ where λx ∈ T ∗

x M.

If ũ(t), t ∈ [0, T ], is a control such that the associated solution x(t)
to (Σ) minimizes the time among all admissible curves steering
x(0) to x(T ), then there exists a Lipschitzian curve (λ(t), x(t)) in
the cotangent space T ∗M of M (here λ(t) ∈ T ∗

x(t)M) such that

1. λ(t) ̸= 0 for all t ∈ [0, T ];
2. H(λ(t), x(t), ũ(t)) = maxu∈U H(λ(t), x(t), u) for almost all

t ∈ [0, T ];
3. H(λ(t), x(t), ũ(t)) ≥ 0 for almost all t ∈ [0, T ];
4. (λ(t), x(t)) satisfies the equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d
dt

x(t) =
∂

∂λ
H(λ(t), x(t), ũ(t)) = f (x(t)) +

m∑
j=1

ũj(t)gj(x(t))

d
dt

λ(t) = −
∂

∂x
H(λ(t), x(t), ũ(t))

3. General results

We consider the linear system

(Σ) ġ = Xg +

m∑
j=1

ujY j
g ,

in the connected n-dimensional Lie group G. The subset U of Rm

where the control u = (u1, . . . , um) takes its values will be either
Rm (unbounded case), or [−B, B]m for some B > 0 (bounded case),
and the admissible controls will be taken in L∞(R+;U).

To apply the Pontryagin Maximum Principle we should first
write the Hamiltonian of the system that is

H(λg , g, u) = ⟨λg ,Xg +

m∑
j=1

ujY j
g⟩.

Since Y j
g = TLg .Y j, Xg = TLg .Fg and λg = λ ◦ TLg−1 , we can

translate H to the tangent space at the identity, that is:

H(λ, g, u) = ⟨λ, F (g)⟩ +

m∑
j=1

uj⟨λ, Y j
⟩

Notice that H is no longer written in the cotangent space of G but
in g∗

× G. Thanks to the computations of [16], we know that the
3

associated Hamiltonian equations are in g∗
× G:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ġ = Xg +

m∑
j=1

ujY j(g)

λ̇ = (−D +

m∑
j=1

ujad(Y j))∗λ

here D is the derivation of g associated to X .

.1. The unbounded case

In the unbounded case, the maximization of H implies

λ, Y i
⟩ = 0 for i = 1, . . . ,m. (1)

f (λ(t), g(t)) is an extremal then we have ⟨λ(t), Y i
⟩ = 0 for

ll t for which the extremal is defined, hence also ⟨λ̇(t), Y i
⟩ =

almost everywhere. By the Hamiltonian equations, this last
quality is equivalent to

λ(t), −DY i
+

m∑
j=1

uj(t)[Y j, Y i
]⟩ = 0 a.e., ∀i = 1, . . . ,m. (2)

Such extremals are called singular (see [15]) and are known to
atisfy also the Goh condition:

λ(t), [Y i, Y j
]⟩ = 0, ∀i, j = 1, . . . ,m along singular extremals.

(3)

Applying the Goh condition to (2) we get ⟨λ(t), −DY i
⟩ = 0, for

i = 1, . . .m.
Let us denote by K the set of X ∈ g that satisfies ⟨λ(t), X⟩ = 0

along all extremals. According to the previous considerations it is
a subspace of g that contains ∆ + [∆, ∆] + D∆.

Clearly, no extremal exists if K = g. Indeed this would imply
(t) = 0 in contradiction with the PMP.
To characterize the cases where K = g we first look for

a sufficient condition for K to be D-invariant. Let X ∈ K. As
previously the differentiation of ⟨λ(t), X⟩ = 0 implies

⟨λ(t), −DX +

m∑
i=j

uj(t)[Y j, X]⟩ = 0 a.e.

and DX belongs to K as soon as [Y j, X] = 0 for j = 1, . . . ,m. A
natural sufficient condition for K to be D-invariant is, therefore,
[∆,K] ⊂ K. This condition is not directly checkable without
knowing K, and is useless in that case, but it has nice conse-
quences and can be deduced from more convenient conditions.

Lemma 1. We assume the rank condition. If [∆,K] ⊂ K then
K = g.

Proof.

1. We have already seen that K is D-invariant under the
condition of the lemma. Consequently:

∆ + D∆ + D2∆ + · · ·Dn−1∆ ⊂ K.

2. Let V = ∆ + D∆ + D2∆ + · · ·Dn−1∆. This subspace of K is
D-invariant. The assumption of the lemma implies [∆, V ] ⊂

K hence also, D[∆, V ] = [D∆, V ]+[∆,DV ] ⊂ K, and finally
[D∆, V ] ⊂ K. By induction, we get [Dk∆, V ] ⊂ K for all
k ≥ 0 and [V , V ] ⊂ K.
Since [V , V ] is again a D-invariant subspace of K, the same
argument shows that [V , [V , V ]] ⊂ K. By induction, it turns
out that the Lie algebra Lie(V ) generated by V is included

in K.
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3. The Lie algebra Lie(V ) containing ∆ and being D-invariant,
the Lie algebra of the system is equal to RX ⊕ Lie(V ). But
the rank condition is then equivalent to Lie(V ) = g (see
Section 2.3), and we conclude g = K. ■

The following theorem, whose assumption is easily checkable,
an be deduced at once from Lemma 1.

heorem 1. Assume (Σ) to satisfy the Lie algebra rank condition
and the controls to be unbounded. If there exists an ideal a of g such
hat

⊂ a ⊂ ∆ + [∆, ∆] + D∆,

hen no time optimal extremal exists.

roof.
Since ∆+[∆, ∆]+D∆ ⊂ K, we have [∆,K] ⊂ [a,K] ⊂ a ⊂ K.
By Lemma 1, this implies g = K. ■

Remarks.

1. If the Lie algebra g is Abelian, then any subspace ∆ is
an ideal, and we retrieve the well known fact that no
minimum time extremal exists in the Abelian case (for
unbounded inputs, of course).

2. One might think that the ad-rank condition (see Section 2.3)
could be sufficient to assert that K = g. It is not so, as
shown by Example 4.2. In the single input case, the ad-rank
condition is Span(Y + DY + · · · + Dn−1Y ) = g, and if k is
the greater integer such that DkY = 0, the singular control
should be

u(t) =

⟨
λ(t),Dk+1Y

⟩⟨
λ(t), [Y ,DkY ]

⟩
It is the way the singular control is computed in Example
4.2.

3.1.1. The unbounded semi-simple case
As in Section 2.3, let us denote by h the subalgebra of g

enerated by ∆ = span{Y 1, . . . , Ym
}. According to the results

f [18], which can be found in [1], we know that h is included
n the strong Lie saturate of the system, that is the set of vector
ields that can be added to (Σ), viewed as a polysystem, without
odifying the closures A≤t (g) of the attainable sets for all t > 0

and g ∈ G. This means that all the left-invariant vector fields
belonging to h can be added to the set of controlled vector fields
without modifying the sets A≤t (g) for all t > 0 and g ∈ G.

This adaptation of extension techniques to linear systems on
Lie groups is made in [14] and used in [12].

In the particular case where h is equal to g, this implies that
A≤t (g) = G, hence A≤t (g) = G because the system is Lie
determined (see [1]), for all t > 0 and g ∈ G. The conclusion
is that the minimum time is 0 and is of course never reached.

The condition h = g may appear very strong, but it is of par-
ticular importance when the Lie algebra is semi-simple. Indeed
it is proven by Kuranishi in [19] that generically the subalgebra
generated by a pair {Y 1, Y 2

} of elements of a semi-simple Lie
algebra g is equal to g. Kuranishi’s result implies the following
statement.

Theorem 2. The connected group G is assumed to be semi-
simple, the Lie algebra rank condition to hold and the controls to
be unbounded.

A generic system

(Σ) ġ = Xg +

m∑
ujY j

g

j=1 [

4

with m ≥ 2 has no time extremals. Moreover the minimum time
between any two points is 0.

In Sections 4.3.1 and 4.3.2, that live respectively in the 3-
dimensional semi-simple Lie groups SO3 and SL2, the control is
one-dimensional. If these systems were controlled by two linearly
independent left-invariant vector fields then no time extremals
could exist.

3.1.2. Minimal time and existence of extremals
It is worth noticing that the lack of extremals does not imply

that the minimal time is zero as in the classical (Abelian) case.
Indeed, the minimum time from a given point g0 to another given
point g1 could be the positive time, say T > 0. However, no
admissible curve steers g0 to g1 in time T . This is the case of
ection 4.1, where no extremal exists but where some points
annot be joined in arbitrary small time.
In that case, the minimal time may be computed as the limit

hen B tends to +∞ of the minimal time TB obtained for inputs
bounded by B.

3.2. The bounded case

We consider now the case where −B ≤ uj ≤ B for j =

, . . . ,m. Thanks to Filippov’s Theorem, we know that time min-
mizers exist (see [15]).

The maximization of H implies

1. uj = ϵjB, where ϵj = sign⟨λ, Y j
⟩, if ⟨λ, Y j

⟩ ̸= 0;
2. uj is not determined if ⟨λ, Y j

⟩ = 0.

Thus we get 2m different dynamics, to which must possibly be
dded the dynamics related to ⟨λ, Y j

⟩ = 0 for some j’s.

3.2.1. The bang–bang problem
It is well known that in the Abelian simply connected case,

that is when G = Rn, and when the set U is a polytope, a time
optimal control takes values at the vertices of U and switches

finite number of times between these values in a compact
nterval of time. The proof uses the fact that the covector λ(t) is an
nalytic solution of a differential equation that does not depend
n the control. Indeed the general equation of λ is:

˙ = (−D +

m∑
j=1

ujad(Y j))∗λ

nd the terms depending on the uj’s disappear in the Abelian case.
he picture is different in the non Abelian one, and a general
ang–bang theorem cannot be proven. Some extremals that are
ot bang–bang are exhibited in the examples.

. Examples

.1. An example in Aff+(2)

The 2-dimensional connected affine group is the Lie group:

= Aff+(2) =

{(
x y
0 1

)
; (x, y) ∈ R∗

+
× R

}
.

ts underlying manifold can be identified with R∗
+

×R, and its Lie
lgebra g = aff(2) is generated by the left-invariant vector fields
= x ∂

∂x and Y = x ∂
∂y in natural coordinates. Since [X, Y ] = Y

this 2-dimensional algebra is solvable.2

2 Define the derived series of g by D1g = [g, g] and by induction Dn+1g =

Dng,Dng], then g is solvable if Dng vanishes for some integer n.
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It is easy to see that in the basis (X, Y ), all derivations D

of aff(2) have the form D =

(
0 0
a b

)
where a and b are real

numbers, and that the linear vector field X associated to such a
derivation is X (g) = (a(x − 1) + by) ∂

∂y for g = (x, y) (See [12] for
more details).

Recall also from [12] that up to a group automorphism a
linear system in Aff+(2) that satisfies the rank condition has the
following form

(Σb)
{
ẋ = uαx
ẏ = x − 1 + by with α ̸= 0.

nd that it is globally controllable if and only if b = 0. In that case
the system is

(Σ)
{
ẋ = uαx
ẏ = x − 1 with α ̸= 0.

Here, the linear vector field is associated with the derivation

D =

(
0 0
1 0

)
in the canonical basis (X, Y ), and the controlled

vector is αX . The Hamiltonian is

H(λg , g, u) = ⟨λg ,Xg⟩ + u⟨λg , αXg⟩ = ⟨λ, Fg⟩ + u⟨λ, αX⟩.

Let us first look at the unbounded case. The maximization
ondition implies ⟨λ(t), X⟩ = 0, and then

= ⟨λ̇(t), X⟩ = ⟨λ(t), −DX + uα[X, X]⟩ = ⟨λ(t), −Y ⟩.

The last equality implies λ = 0 so that no extremal trajectory
exists. Indeed, Span(X, Y ) = ∆ + D∆ and we find the results of
Section 3.1, that is ∆ + D∆ ⊂ K.

However, the equation ẏ = x − 1 and x be positive imply that
an admissible curve cannot steer (1, 0) to (1, −d) in timeless than
d.

Let us now compute the time minimizing curve between these
points for bounded controls, u ∈ [−B, B]. We can assume α >

0 without loss of generality. In coordinates, the Hamiltonian is
(with λg = (p, q)):

H(λg , g, u) = ⟨λg ,Xg⟩ + u⟨λg , αXg⟩ = upαx + q(x − 1)

and the Hamiltonian equations are:{
ẋ = uαx
ẏ = x − 1

{
ṗ = −uαp − q
q̇ = 0

Assume p(t0) = 0 for some t0. Then q = q0 ̸= 0 because
the pair (p(t), q(t) = q0) vanishes nowhere. This implies ṗ(t0) =

−q ̸= 0, hence that p can vanish at most once.
The consequence is that an optimal control takes the constant

value B or −B and changes at most once. Further, the only
possibility from (1, 0) to (1, −d) is first u = −B on [0, T

2 ] (in order
that x(t) ≤ 1 and ẏ ≤ 0), and then u = B on [

T
2 , T ], in order that

(T ) = 1. A straightforward computation gives

x(t) = e−Bαt t ∈ [0, T
2 ]

x(t) = e−BαT eBαt t ∈ [
T
2 , T ]

and y(T ) =
2
Bα

(1− e−Bα T
2 )− T .

o finish y(T ) = −d ⇐⇒ T = d +
2
Bα (1 − e−Bα T

2 ) > d. But
T ↦−→B↦→+∞ d and the minimal time to steer (1, 0) to (1, −d)
with unbounded controls is indeed d and is not reached.

4.2. An example in the Heisenberg group

The Heisenberg group is the matrix group

G =

{(1 x z
0 1 y

)
; (x, y, z) ∈ R3

}
.

0 0 1

5

The following left-invariant vector fields written in natural coor-
dinates (x, y, z),

X =
∂

∂x
, Y =

∂

∂y
+ x

∂

∂z
, Z =

∂

∂z
,

generate its Lie algebra. The only Lie bracket that does not vanish
is [X, Y ] = Z . A straightforward computation using the equality
DZ = [DX, Y ] + [X,DY ] shows that the derivations of g are the
endomorphisms whose matrix in the basis (X, Y , Z) is written as

D =

(a b 0
c d 0
e f a + d

)
.

Further, the linear vector field X associated with this derivation
is written in natural coordinates and is read as

X = (ax+by)
∂

∂x
+(cx+dy)

∂

∂y
+(ex+fy+(a+d)z+

1
2
cx2+

1
2
by2)

∂

∂z
.

It is shown in [12] that a single-input system that satisfies the Lie
algebra rank condition is up to a group automorphism equal to:

(Σ) ġ = Xg + uXg where D =

(0 b 0
1 d 0
0 f d

)
is the derivation associated to X in the basis (X, Y , Z).

Let us look at the time optimal problem for unbounded inputs.
The Hamiltonian is

H(λ, g, u) = ⟨λ, Fg⟩ + u⟨λ, X⟩.

The maximization condition implies ⟨λ(t), X⟩ = 0, and then

0 = ⟨λ̇(t), X⟩ = ⟨λ(t), −DX + u[X, X]⟩ = ⟨λ(t), −Y ⟩,

since DX = Y . The condition ⟨λ(t), Y ⟩ = 0 implies in turn

0 = ⟨λ̇(t), Y ⟩ = ⟨λ(t), −DY + u[X, Y ]⟩

= ⟨λ(t), −(bX + dY + fZ) + uZ⟩ = ⟨λ(t), −fZ + uZ⟩.

ince ⟨λ(t), X⟩ = ⟨λ(t), Y ⟩ = 0 but λ(t) ̸= 0, we get u = f .
his example illustrates the fact that some of the maximization
quations may provide the values of the optimal controls. Here
he only possibility is u constant is equal to f .

An extremal trajectory has to satisfy the condition H ≥ 0 of
he PMP and the Legendre–Clebsch condition because the system
s single-input.

For a general single-input system

˙ = X(x) + uY (x) with u ∈ R,

he Legendre–Clebsch condition is ⟨λ(t), [Y , [Y , X]](x(t))⟩ ≤ 0
along any singular extremal (λ(t), x(t)) (see [15]).

Let us consider the particular case where b = d, but f ̸= 0.

ere D =

(0 0 0
1 0 0
0 f 0

)
and

(
X DX D2X

)
=

(1 0 0
0 1 0
0 0 f

)
so

hat the ad-rank condition holds, thanks to f ̸= 0 (and the system
s controllable, see [12]). Nevertheless, the conditions H ≥ 0 and
he Legendre–Clebsch ones are satisfied for a suitable choice of
. Indeed in the coordinates g = (x, y, z) and λ = (p, q, r) the
onditions ⟨λ, X⟩ = ⟨λ, Y ⟩ = 0 become p = 0 and q + rx = 0.
For the control u(t) = f , and taking into account the above

qualities, the Hamiltonian is in coordinates: H(λ, g, u = f ) =

x + r(fy +
1
2x

2) =
1
2qx + rfy.

On the other hand, [X, [X,X ]] = [X,DX] = [X, Y ] = Z and
⟨λ(t), Z⟩ = r . The Legendre–Clebsch condition is, therefore, r ≤ 0.
From the Hamiltonian, we know that r is constant and cannot
vanish (r = 0 would imply p = q = r = 0). Finally, we get

r < 0 and
1
qx + rfy ≥ 0,
2
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hich is always possible by a suitable choice of q(0) except if
x(0) = 0 in which case the additional condition rty ≥ 0 is
necessary.

Let us turn our attention to the bounded case −B ≤ u ≤ +B.
ccording to the above, two different cases are depending on
f | > B or not.

If |f | > B, the control can only take the values −B and +B.
ore accurately u(t) = ϵB, where ϵ = sign⟨λ(t), X⟩. On the

contrary if |f | ≤ B a time minimizer may contain arcs of singular
extremals.

4.3. Examples on SO(3, R) and SL(2, R)

.3.1. The compact case SO(3, R)
Let G = SO(3,R) be the rotational group. Its Lie algebra so(3,R)

is the set of skew-symmetric 3 × 3 real matrices. Its canonical
basis {X, Y , Z} satisfies

[X, Y ] = Z, [Z, X] = Y , and [Y , Z] = X

Consider the unbounded linear system

(Σ) ġ = Xg + uYg , where D = −ad(X) and U = R.

ince SpanLA{X , Y } = g, the system satisfies the LARC condition.
urthermore, Σ is controllable, [20] .
The associated Hamiltonian function reads as

(λg , g, u) = ⟨λ, Fg⟩ + u⟨λ, Y ⟩,

nd the maximization condition implies ⟨λ(t), Y ⟩ = 0. By differ-
ntiation

= ⟨λ̇(t), Y ⟩ = ⟨λ(t), (−D + u ad(Y ))Y ⟩ = ⟨λ(t), Z⟩.

second derivation yields

= ⟨λ̇(t), Z⟩ = ⟨λ(t), −DZ + u ad(Y )Z⟩ = u⟨λ(t), X⟩.

ince ⟨λ(t), Y ⟩ = ⟨λ(t), Z⟩ = 0 it is not possible that ⟨λ(t), X⟩

anishes. Finally, we obtain u(t) = 0 almost everywhere. In con-
lusion, the only possible minimizers, that is, the only projection
f extremal curves, are the integral curves of:

˙ = Xg .

an the conditions H ≥ 0 and the Legendre–Clebsch ones be
atisfied? Since [Y , [Y ,X ]] = [Y ,DY ] = [Y , −Z] = −X the
egendre–Clebsch condition is here:

⟨λ, X⟩ ≤ 0 (Legendre–Clebsch)

ince ⟨λ, X⟩ ̸= 0 this condition is satisfied, even if it means
hanging the sign of λ.
On the other hand, the condition H ≥ 0 with u = 0 is simply

λ, Fg
⟩
. But the derivation D = −ad(X) is here inner and the vector

ield X is defined by Xg = TLg .X − TRg .X (see [6]).
Therefore Fg = TLg−1Xg = X − TLg−1TRg .X , and the condition
≥ 0 turns out to be:

≥ 0 ⇐⇒ ⟨λ, X⟩ ≥
⟨
λ,Ad(g−1)X

⟩
.

his condition is satisfied for g in a non-empty subset of G.
Since the singular extremals are obtained for u = 0 they must

e taken into account in the bounded case −B ≤ u ≤ +B, and a
ime minimizer may contain arcs of singular extremals.

.3.2. The non compact case SL2
It appears to be very similar to the previous one.
Let G = SL(2,R) be the group of order two real matrices with

eterminant 1. Its Lie algebra is given by the real matrices of trace
6

ero and order two,

l(2,R) = Span {H, S, A} , where [H, S] = 2A,

[H, A] = 2S, [S, A] = −2H.

Consider the unbounded linear system

(Σ) ġ = Xg + uHg , where D = −ad(A) and U = R.

As before, we conclude that a necessary condition for the exis-
tence of a minimizer is u = 0. Thus the only possible minimizers
connect points of the same integral curve of the linear vector field

ġ = Xg .
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