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a b s t r a c t

Let G be a connected Lie group with Lie algebra g and Σ = (G,D) a controllable invariant control system.
A subset A ⊂ G is said to be isochronous if there exists a uniform time TA > 0 such that any two arbitrary
elements in A can be connected by a positive orbit ofΣ at exact time TA. In this paper, we search for classes
of Lie groups G such that any Σ has the following property: there exists an increasing sequence of open
neighborhoods (Vn)n≥0 of the identity in G such that the group can be decomposed in isochronous rings
Wn = Vn+1 − Vn. We characterize this property in algebraic terms and we show that three classes of Lie
groups satisfy this property: completely solvable simply connected Lie groups, semisimple Lie groups and
reductive Lie groups.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Let G be a connected Lie group with Lie algebra g. As in
Definition 5, consider a right invariant control system Σ on G. A
subset A of G with non empty interior is said to be isochronous if
there exists a positive uniform time TA such that any two points in
A can be connected by a positive trajectory of Σ at exactly TA units
of time. We also say that TA is an isochronous time for Σ .

In this paper we analyze the existence of an isochronous
decomposition for a large class of Lie groups. This notion appears
naturally from the fact that for a general non compact Lie group, a
global uniform time for Σ may not longer exist.

According to Theorem 4.5 in [1], the reachable set SΣ (e, t) of Σ
from the identity element e of G at exact time t satisfies

SΣ (e, t) ⊂ exp(tX)G0

whereX is the drift vector field ofΣ andG0 is the associatednormal
Lie subgroup of G with Lie algebra L0, the ideal generated by the
control vectors.

L0 = Span {[P,Q ] : P,Q ∈ D} + Span {P − Q : P,Q ∈ D}

D is as in Definition 5.
Furthermore, with respect to the G0-topology

cl(int G0(SΣ (e, t))) = cl(SΣ (e, t)).
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As usual int (P)means the interior of a set P and cl its closure. Thus,
assuming the Lie algebra rank condition, it turns out that if the
co-dimension of L0 is 1 we cannot expect controllability at exact
time. Therefore, we will not have controllability at uniform time.
Of course, controllability itself is also a necessary condition for our
study.

From the Lie algebra structure theory, see [2,3], specifically from
the Levi decomposition, we know that any arbitrary Lie algebra g
can be decomposed as g = r+ s.Here, r = r(g) is the solvable rad-
ical of g and s its semisimple part. As appointed by an anonymous
referee, it should be noted that g is just a direct sum of subspaces.
However, g is a semidirect product of Lie algebras through the ad-
joint representation of s on r. In particular, there exists a connected
Lie group G = R×s S with Lie algebra g. In this context, R and S are
Lie groups with Lie algebras r and s respectively. The group R is
connected, normal, and solvable; S is connected and semisimple;
and G is the semidirect product between R and S. The semidirect
product in the group is defined through conjugacies.

On the other hand, if R is a non simply connected Abelian Lie
group, Example 11 shows the existence of a controllable invariant
control system such that any reachable set has empty interior. In
other words, this kind of space state is not suitable for us. We
concentrate the analysis on the following classes of Lie groups:

Gcs = {R : R is cs simply connected}
Gss = {S : S is semisimple}
Gr = {R × S : R ∈ Gcs and R is abelian, S ∈ Gss} .

Recall that a solvable Lie group is said to be completely solvable,
(cs), if for any element Z in its Lie algebra, the linear transformation
ad(Z) has just real eigenvalues.
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If the control range K is bounded, Lemma 4.4 in [4] shows
that for any t > 0 the reachable sets SΣ (e, ≤ t) and SΣ (e, t) are
compact sets. So, ifG is not compact, under the bounded admissible
control class we cannot expect controllability at uniform time for
the entire manifold.

Through the paper we look for topological and algebraic
conditions to impose on G and Σ in order to decompose the space
state in sets where any two states can be reached by a positive Σ-
trajectory in a universal time. We get,

Theorem 1. Let Σ an invariant control system on G. Suppose Σ is
controllable, then L0 = g if and only if G can be covered by an
increasing sequence (Vn)n≥0 of open isochronous neighborhoods of the
identity.

By analogywith vector spaceswe call the setWn = Vn+1−Vn an
isochronous ring. In particular, under the hypothesis of Theorem 1
we decompose the space state as G = ∪n≥0 Wn, where V0 = ∅.

We first analyze the situation on Gcs. Denote by DU the
Lie algebra of g generated by the control vectors of Σ , as in
Definition 5,
DU = SpanLA{Y 1, . . . , Ym

}.

According to [5], see also [6], when K = Rm the hypothesis
DU = g is a necessary and sufficient condition for the controlla-
bility ofΣ , when G = R ∈ Gcs is nilpotent, see also [7,8] for related
topics. Furthermore, in [9] the author extends this result for a sim-
ply connected completely solvable Lie group, see also [10].

By working with the class of unrestricted control and assuming
that the Lie algebra generated by the control vectorsDU is g in [11],
the author makes an important contribution to the study of exact
controllability at arbitrary time.

Theorem 2. Let Σ = (G,D) be an invariant control system on a
connected Lie group G. Then DU = g implies SΣ (e, T ) = G for all
T > 0.

On the other hand, in the context of invariant systems on
semisimple Lie groups, for any class of admissible controls the
authors prove in [4]:

Theorem 3. Let G be a connected and compact semisimple Lie group
and Σ an invariant control system on G. If Σ satisfies the Lie algebra
rank condition, then Σ is controllable at uniform time.

In Section 3 we generalize this theorem as a particular case of
Theorem 1, when G ∈ Gss. Actually, Theorem 3 says that the whole
group G is an isochronous set for Σ . Of course, the compactness
property of G is essential to find a global isochronous time for
the space state. The proof of Theorem 3 is based on the following
topological results, see [1].

Theorem 4. Let M be a manifold whose universal cover space is
compact. Then, every system having the accessibility property has the
strong accessibility property.

In [12], the authors give amore elementary proof of Theorem 3.
Since the Lie algebra g of G is semisimple, in particular it does not
contain ideals of codimension 1. It turns out that for any positive
time t , the accessibility set SΣ (e, t) does not have empty interior in
the G-topology. Therefore, the system has the strong accessibility
property and the proof follows.

We apply the main results of the paper to the class of bilinear
control systems in Rn. As usual, we consider the Lie algebra g
generated by the bilinear control systemΣBil such that the induced
invariant control system Σ on G ∈ G satisfies the hypothesis of
Theorem 1. Pick a point x0 ∈ Rn, then there exists a decomposition
of G(x0) in isochronous rings.

This article is organized as follows. Section 2 contains some
preliminaries; in particular, the definition of invariant control
system and the isochronous set notion. In Section 3, we prove
Theorem 1 in which we characterize the isochronous property in
algebraic terms and then we show that it is satisfied by the classes
Gcs, Gss andGr . In order to show the role of the unrestricted class of
control and the simply connected hypothesis, in Section 3 we also
comment on some results of controllability on nilpotent, solvable
and completely solvable Lie groups, which appeared in [5,10,9].
Section 4 contains a number of examples.

2. Preliminaries

From a geometric point of view, a control system is determined
by a manifold: the space of states and a family of differential
equations. In our special case, the system reads

Definition 5. An invariant control system Σ = (G,D) is deter-
mined by a Lie groupGwith Lie algebra g and the dynamicsD given
by

D =


Xu

= X +

m−
j=1

ujY j
: u ∈ U


.

Here, the drift vector field X and the control vectors Y j, j = 1,
2, . . . .,m, are elements of g considered as right invariant vector
fields. Any admissible control u is an element of the class

UK =

u : R → K ⊂ Rm

 u(t)is a piecewise constant function

.

The possibilities for the control range are: the unrestricted
controls K = Rm; the bounded controls K = [−1, 1]m, and the
bang–bang controls K = ∂[−1, 1]m. Except if explicitly mentioned
the results are valid for each of the three mentioned classes of
controls.

For each Z ∈ D, the associated flow (Zt)t∈R is a 1-parameter
subset of Diffeom(G), the set of diffeomorphisms of G. As usual, we
consider the sets
GΣ = {Z1

t1 ◦ Z2
t2 ◦ · · · ◦ Zk

tk : Z i
∈ D, ti ∈ R and r ∈ N}

and
SΣ = {Z1

t1 ◦ Z2
t2 ◦ · · · ◦ Zk

tk : Z i
∈ D, ti ≥ 0 and r ∈ N}

which are a group and a semigroup of Diffeom(G), respectively.

Definition 6. Let Σ = (G,D) be an invariant control system

(i) Σ is said to be Transitive if GΣ acts transitively on G.
(ii) Σ is said to be Controllable if SΣ acts transitively on G.
(iii) A subset A of G with non empty interior is said to be

Isochronous if there exists a time TA > 0 such that for any
arbitrary two elements x, y ∈ A there exists ϕ = Zt1 ◦Zt2 ◦· · ·◦

Ztr ∈ SΣ with Σ r
i=1ti = TA and ϕ(x) = y. In this case, TA is said

to be an isochronous time to A.

LetM be an analyticalmanifold andD a family of analytic vector
fields on M . As explained in [1], the zero time orbit of the system
Σ = (M,D) through the initial condition x ∈ M is the set:
OM

0 (x) = {Z1
t1 ◦ Z2

t2 ◦ · · · ◦ Zk
tk(x) : Z i

∈ D, ti ∈ R, r ∈ N

and Σ r
i=1ti = 0}.

In our specific case O0(e) = G0 is a normal subgroup of G with
Lie algebra
L0 = Span {[P,Q ] : P,Q ∈ D} + Span{P − Q : P,Q ∈ D}.

Just observe that by definition, for every couple P,Q ∈ D the Lie
brackets

[P,Q ] =


d
dt


t=0+

Q−
√
t ◦ P−

√
t ◦ Q√

t ◦ P√
t(e) ∈ L0.

In this paper we assume that Σ satisfies the Lie algebra rank
condition, i.e., SpanLA(D) = g. In particular we get:

Lemma 7. L0 is an ideal of codimension 0 or 1.
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As a consequence, the Lie subgroup G0 is of codimension 0 or 1.
Let t be a positive time and denote by SΣ (e, t) the reachable set of
Σ at exact time t:
SΣ (e, t) = {g ∈ G : ∃ϕ ∈ SΣ with ϕ(e, t) = g} .

In the sequelwe recall a fundamental result for this kind of sets, [1].

Proposition 8. Let Σ = (G,D) be a right invariant control system
on a connected Lie group G. Then, for any t > 0,
(i) SΣ (e, t) ⊂ exp(tX)G0
(ii) SΣ (e, t) has nonvoid interior in the topology of G0. Furthermore,

cl(intG0(SΣ (e, t))) = cl(SΣ (e, t)).

It is very well known that the orbit GΣ (e) is a connected Lie
subgroup of G with Lie algebra SpanLA(D). Since we consider
transitive systemswe suppose thatΣ satisfies the Lie Algebra Rank
Condition: (LARC), i. e., SpanLA(D) = g. In otherwords,G = GΣ (e).

3. Isochronous ring decomposition

Let G be a connected Lie group with Lie algebra g and Σ an
invariant control system on G. We have,

Proposition 9. If Σ is controllable andL0 = g, there exists a positive
time t+ such that

G =


n≥1

SΣ (e, nt+).

Proof. Since G is connected, it follows that G0 = G. Therefore,
for any positive time t the set SΣ (e, t) has nonvoid interior
and int SΣ (e, t) is dense in cl(SΣ (e, t)), in the topology of the
manifold G.

Consider the controllable right invariant system −Σ = (G,
−D). We have,
t≥0

SΣ (e, t) = G =


s≥0

S−Σ (e, s)

where S−Σ (e, s) denotes the accessible set of −Σ at time s ≥ 0.
We claim: there are positive times t0 and s0 such that

int SΣ (e, t0) ∩ int S−Σ (e, s0) ≠ ∅.

If not, for each t > 0

int SΣ (e, t) ∩ int S−Σ (e, s) = ∅, for all s > 0.

Thus,

int SΣ (e, t) ∩ cl(int S−Σ (e, s)) = ∅, for all s > 0.

So, there exists a positive time t such that int SΣ (e, t) ∩ G = ∅,
which is a contradiction. Therefore, we find x ∈ Gwith

x ∈ int SΣ (e, t0) ∩ int S−Σ (e, s0).

As usual, we denote by exp the exponential map from the Lie
algebra g to the Lie group G. It follows that there are points Zi ∈

−D, si ≥ 0 and Σ r
i=1si = s0 such that

x = exp(srZr) · · · exp(s1Z1)e.

Then,

e = exp(s1W1) · · · exp(srWr)x, with Wi = −Zi ∈ D.

Since x is also an element of int SΣ (e, t0) and the left translations
are G-diffeomorphisms, we obtain:

e ∈ exp(s1W1) · · · exp(srWr) · int SΣ (e, t0) ⊂ int SΣ (t0 + s0).

Let t+ = t0 + s0. Since int SΣ (e, t+) is a neighborhood of the
identity and G is a connected topological group,

G =


n≥1

int SΣ (e, t+)n.
Since SΣ is a semigroup, for any natural number nwe have

SΣ (e, t+)n ⊂ SΣ (e, nt+).

Finally, we get

G =


n≥1

SΣ (e, nt+). �

Now, we are able to prove

Theorem 10. Suppose that Σ is an invariant controllable system on
G. Then, L0 = g if and only if there exists an increasing sequence of
isochronous open neighborhoods Vn of the identity that decomposes G
in isochronous rings.
Proof. For the above proposition, there exists a time t+ such that
e ∈ int SΣ (e, t+). Since −Σ is also controllable, there exist a
time t− such that e ∈ int S−Σ (e, t−). Let V1 = int SΣ (e, t+) ∩

int S−Σ (e, t−). We claim: V1 is an isochronous set. Let x, y be in
V1, then there exists a trajectory of Σ steering e to y in t+ units
of time. Also, there exists a trajectory of −Σ steering e to x in t−
units of time. Thus, there exists an admissible control of Σ that
steers x to e in t− units of time. By concatenation, there exists a
trajectory of Σ steering x to y in t− + t+ units of time. Then, V1
is an isochronous set. For n ≥ 1 define Vn = V n

1 and V0 = ∅.
By the semigroup property of SΣ (e), it follows that Vn is an
isochronous neighborhood of e. Therefore, G = ∪n≥0 Wn, where
Wn = Vn+1 − Vn and V0 = ∅ is the desired decomposition. For the
converse, note that there exists a time t1 such that SΣ (e, t1)has non
empty interior. We know that SΣ (e, t1) ⊂ exp(t1X)G0, thus G0 has
non empty interior. Since G is connected, we obtain G0 = G and
then L0 = g. �

Example 11. From the Lie structure theory we know that any
connected Abelian Lie group G has the form G = T k

× Rn. Here,
T k is the k-dimensional torus S1 × · · · × S1 and Rn is the usual
n-dimensional Euclidean space, which is the adjacent topological
space of the simply connected part of G. Next, we show a
controllable invariant control system Σ on G such that for any
positive time t the accessible set SΣ (e, t) has empty interior with
respect to the G-topology. In fact, assume k = 1 and consider the
transitive invariant control system Σ = (S1 × Rn,D) where

D=


Xu

= X +

m−
j=1

ujY j
: u ∈ U


.

Here, the drift vector field X =
∂
∂s is the infinitesimal generator of

the circle S1, the control vectors Y j, j = 1, 2, . . . ., n generates Rn

and URm is the class of unrestricted admissible controls. For any
positive time t ,

SΣ (e, t) =


exp t

∂

∂s
(1, 0), SΣRn (0, t)


= exp t

∂

∂s
(1, 0) × Rn

where SΣRn is the semigroup associated with the system Σ
restricted to Rn. So, we cannot expect Theorem 1 for the class of
Abelian Lie groups. In fact,

int G SΣ (e, t) = ∅.

In the next two subsections we are looking for topological and
algebraic conditions to meet the hypothesis of Theorem 1.

3.1. Solvable systems

In order to show the role played by the unrestricted class of
control and the additional simply connected hypothesis imposed
on a completely solvable Lie group G, we comment some
controllability results appearing in [5,9]. Furthermore, the notion
Lie saturate and strong Lie saturate of a system is also related to
our study.



940 V. Ayala et al. / Systems & Control Letters 60 (2011) 937–942
By definition, a Lie algebra g is solvable if there exists a natural
number k ≥ 1 such that its derivative series stabilizes at the origin,
i.e.,

0 = adk(g) =

adk−1(g), adk−1(g)


⊂ · · · ⊂ ad1(g) ⊂ ad0(g)

= g, ad0 = Id.

A Lie group is said to be solvable if its Lie algebra is solvable. For
the class of invariant control systems on a solvable Lie group G, the
controllability property can be characterized as follows, see [10].

Theorem 12. Σ is controllable if and only if

(i) SpanLA(D) = g, and
(ii) D is not contained in a half space of g bounded by a subalgebra.

In order to have a more direct way to check controllability for
connected and simply connected solvable Lie groups, in [9] the
author introduces the following notion: a solvable Lie algebra is
said to be completely solvable if

Spec(ad(Z)) ⊂ R, for every Z ∈ g

to obtain:

Theorem 13. Let Σ be an invariant control system on a Lie group
G ∈ Gcs. Then, Σ is controllable if and only if

DU = SpanLA


Y 1, . . . , Ym

= g.

If g is a nilpotent Lie algebra, for any Z ∈ g the set Spec(ad(Z))
reduces to zero. So, g is a completely solvable Lie algebra. In
particular, Theorem 13 is a perfect generalization of the results
obtained in [5], see also [6], when G ∈ Gcs is nilpotent.

To study controllability on semisimple Lie groups, the authors
introduced in [13] the notion of Lie saturate LS(Γ ) of a set Γ ⊂ g

of invariant vector fields. In our case, it is possible to characterize
this notion as follows, [14]

LS(D) =

A ∈ SpanLA(D) : expR+A ⊂ cl SΣ (e)


.

It turns out that for any j = 1, 2, . . . ,m,

lim
u→±∞

X + ujY juj
 = ±Y j.

In particular,DU is contained in the Lie saturate LS(D). Controllabil-
ity follows from the Lie saturate test given by: Let G be a connected
Lie group. A system (G,D) is controllable if and only if LS(D) = g.
See [13] and also Theorem 4.1 in [14]. Reciprocally, if DU is not g

there exists a subalgebra L1 of codimension 1 containingDU. There-
fore,

D=


X +

m−
j=1

ujY j
: u ∈ U


⊂ DU ⊂ R+X + L1.

1. If X ∉ L1 it follows that R+
+ L1 is a half space bounded by

the subalgebra L1. Thus, by Theorem 12 the system is not
controllable since R+

+ L1 contains D.
2. If X ∈ L1 then R+X + L1 = L1 contains D. So, the system cannot

be controllable since it is not even transitive.

The proof of the main result in [5] uses the co-adjoint
representation of G and through the notion of a symplectic vector
the author builds an increasing differentiable function on any
positive trajectory of the system. The simply connected hypothesis
plays the following role,

Proposition 14. Assume DU is a subalgebra of co-dimension 1 in g

and denote by H the connected Lie subgroup of G with Lie algebra
DU. We have
(i) If H is closed, Σ is controllable if and only if X ∈ DU and the
homogeneous space G/H is compact

(ii) If H is not closed, Σ is controllable if and only if X ∉ DU.

If Σ is controllable the symplectic vector theory implies that
DU is an ideal of co-dimension 0 or 1. Co-dimension 1 is not
allowed since in that case G/G0 ∼= S1 and then G cannot be simply
connected.

By assuming that the Lie algebra generated by the control
vectors is g in [11] the author makes an important contribution to
the study of exact controllability at any time.

Theorem 15. Let Σ = (G,D) be an invariant control system on a
connected Lie group G. Then DU = g implies SΣ (e, T ) = G for all
T > 0.

Related to exact controllability we also have the following
notion

Definition 16. The strong Lie saturate of D is the largest subset
LSS(D) of SpanLA(D) with the property that cl SLSS(D)(e, ≤ T ) =

cl SΣ (e, ≤ T ), for all T > 0.

Theorem 17. Let G be a completely solvable simply connected Lie
group and Σ = (G,D) an invariant control system. The following
statements are equivalent: (1) Σ is controllable, (2) DU = g, (3)
LSS(D) = g, (4) SΣ (e, ≤ T ) = G for all T > 0, (5) SΣ (e, T ) = G for
all T > 0.

Proof. The equivalence between (1) and (2) is given in [9]. First, we
prove the equivalence between (3) and (4). Suppose LSS(D) = g,
then

cl(SΣ (e, ≤ T )) = cl(SLSS(Σ)(e, ≤ T )) = G, for all T > 0.

Let 0 < ϵ < T , therefore

G = int cl SΣ (e, ≤ T − ϵ) ⊂ SΣ (e, ≤ T ),

see [15]. Reciprocally, suppose SΣ (e, ≤ T ) = G for all T > 0. Then
LSS(D) = Lie(D). Since the system is controllable,wehave Lie(D) =

g, which proves our claim. Finally, (4) and (5) are equivalent. In
fact, just by definition (5) ⇒ (4) ⇒ (1) and condition (2) implies
(5) from Theorem 16. �

Therefore, we obtain

Theorem 18. Let Σ be an invariant control system on G ∈ Gcs.
If Σ satisfies any of the conditions in Theorem 17, then G is an
isochronous set for every positive time.

3.2. Semisimple systems

According to the previous section, the class of controllable
invariant control systems on a simply connected completely
solvable Lie group with unrestricted controls has an universal
isochronous set: the own space state G. Furthermore, G is reached
by SΣ (e, t) for any positive time t . In this section we show that for
controllable invariant systems on semisimple Lie groups this is not
the case.

Definition 19. A Lie algebra g is said to be simple if it has a
dimension bigger than 1 and does not contain non trivial ideals.
g is said to be semisimple if its solvable radical r(g) is the Lie
subalgebra zero. Here, r(g)means the direct sum of all solvable Lie
subalgebras of g.

We first observe that

Lemma 20. Let g be a semisimple Lie algebra. Then g doesn’t contain
ideals of codimension 1.
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Proof. Let h an ideal of g of codimension 1. Thus, g/h is a
semisimple Lie algebra, [3], which is a contradiction. �

Therefore, we get

Theorem 21. Let Σ = (G,D) be a right invariant control system
with G ∈ Gss. If Σ is controllable, G can be covered by an increasing
sequence of isochronous open neighborhoods (Vn)n≥0 of the identity.
In particular, G can be decomposed in isochronous rings.

Proof. L0 is an ideal of codimension 0 or 1, then by Lemma 20
it has codimension 0. In particular, L0 = g. Since we assume
controllability, the proof follows from Theorem 1. �

Corollary 22. Let G be a connected and compact semisimple Lie
group. Let Σ = (G,D) be a right invariant control system. Then G
itself is an isochronous set.

Proof. Under the topological assumption on G the proof of
Theorem 10 shows the existence of a natural number n such that
V n

= G. �

However, the uniform time is not arbitrary, see [12].

3.3. Reductive Lie groups

We recall that the Lie algebra g of a reductive Lie groupG has the
form g = z(g) + s, where z(g) is the center of g, s is a semisimple
Lie algebra which is also an ideal of g. Therefore, in this case g and
G are direct products of Lie algebras and Lie groups respectively.

We consider the space state G = Z × S where Z and S are
connected Lie groups with Lie algebras z and s respectively. Here,
Z is abelian and simply connected and S is semisimple.

We need the following fact:

Lemma 23. Let g be a reductive Lie algebra, with g = z(g) + s.
Assume that s = s1 ⊕ s2 · · · ⊕ sk where s1, . . . , sk are simple Lie
subalgebras. If i is an ideal of g then i = j ⊕ sk1 ⊕ · · · ⊕ skr . Where j
is a vector subspace of z(g).

Proof. Consider the canonical projection π : g → g/z(g). In par-
ticular π(i) is an ideal of g/z(g) ∼= s. Since s is semisimple, π(i) has
the form

π(i) ∼= sk1 ⊕ · · · ⊕ skr

where sk1, . . . , skr are elements of the decomposition of s, [3].
Therefore,

i ⊂ π−1π(i) = z(g) ⊕ sk1 ⊕ · · · ⊕ skr .

Since i ∩ s is an ideal of s, there exists a vector subspace j of z(g)
such that

i = j ⊕ sk1 ⊕ · · · ⊕ skr . �

Each invariant vector field W in g can be decomposed as W =

Wa + Ws. It turns out that any invariant control system Σ =

(G,D) induces two subsystems: the Abelian system ΣAb = (R,Da)
and the semisimple system ΣSemis = (S,Ds). With the previous
assumptions and by joining the pieces, we obtain

Theorem 24. Let Σ be a controllable system on a reductive Lie group
GwithURm . Then, G can be covered by an increasing sequence (Vn)n≥0
of open isochronous neighborhoods of the identity. In particular, G
decomposes in isochronous rings.

Proof. From the hypothesis, the induced systems: ΣAb = (R,Da)
and ΣSemis = (S,Ds) are also controllable. By Theorem 13 the
ideal generated by the control vectors of ΣAb = (R,Da), is z(g). On
the other hand, Lemma 20, shows that the ideal generated by the
control vectors of ΣSemis is s. Thus, in the original system, the ideal
generated by the control vectors is z(g)+s = g, by Lemma23. From
Theorem 10 there exists an increasing sequence of isochronous
open neighborhoods Vn of the identity such that decomposes G in
isochronous rings. �

In particular, we prove

Corollary 25. Let Σ = (G,D) be a controllable right invariant con-
trol system with G ∈ G, where G stands for Gcs, Gss, Gr .

(i) If G is compact, then G is an isochronous set. Additionally
(ii) Any bounded subset C of G is an isochronous set.

3.4. General systems

Let g be a Lie algebra and r = r(g) its solvable radical. From
the Levi Decomposition, there exists an algebra s which is
complementary to g. Precisely, g = r ⊕ s decompose as a direct
sum of subspaces such that g/r ∼= s is semisimple. In other words,
s is not always an ideal. However, g = r ⊕s s is a semidirect
product of Lie algebras. In this case s acts on r through the adjoint
representation as follows:
g = r × 0 ⊕s 0 × s

with the bracket defined on (R1, S1), (R2, S2) ∈ g by
[(R1, S1), (R2, S2)] = ([R1, R2] + ad(S1)R2 − ad(S2)R1, [S1, S2]) .

Furthermore, the algebra swhich is complementary to the solvable
radical r(g) is not unique. Each of these algebras is called a Levi
component of g. In this way, g decomposes as a direct sum of
a subalgebra isomorphic to s and an ideal isomorphic to r, both
closed by the bracket. This is a more general setup where we
could try to find a way to generalize the results in the previous
sections. However, in the sequel we show an example given by an
anonymous referee that for general systems, controllability of the
system on the group implies controllability only on the semisimple
factor.

LetG be the Special Euclidean group SE(3), this is the semidirect
product of the the simple real special orthogonal group SO(3) and
the simply connected Abelian group R3.

Consider the left invariant control system:
d
dt

(R, v) = (R(u1B1 + u2B2 + u3B3), Rv)

wherev ∈ R3 is a constant, non-zero vector, andB1, B2, B3 is a basis
of the Lie algebra so(3) of skew-symmetricmatrices. This system is
controllable, however the induced systemonR3 is not controllable.

3.5. Bilinear control systems

It is well known that any invariant control system Σ = (G,D)
induces a homogeneous system on any manifold M when the
connected Lie group G acts transitively onM . Precisely, the system
is given by p(Σ) = (M, p∗(D)). Here, p∗ denotes the differential
of the p-action. It turns out that for every x ∈ M and any positive
time t
p(SΣ (e, t), x) = Sp(Σ)(x, t).
Therefore, in the conditions of Theorem 23, we obtain

Corollary 26. If G acts transitively on M then, the sequence
(p(Wn))n≥0 of isochronous rings of p(Σ) decomposes M.

4. Examples

1. Let G be the simply connected nilpotent Heisenberg Lie group
of dimension 3

G =

1 x1 x3
0 1 x2
0 0 1


: x1, x2, x3 ∈ R


.
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The Lie algebra g = R X + R Y 1
+ R Y 2 is obtained through the

generators X =
∂

∂x1
, Y 1

= x3 ∂
∂x1

+
∂

∂x2
, Y 2

=
∂

∂x3
. The only non-

vanishing Lie bracket is [Y 2, Y 1
] = X . We consider the system Σ

ẋ = (X + u1Y 1
+ u2Y 2)x, x ∈ G, u ∈ R2.

Since DU = g, Theorem 17 shows that Σ is controllable. There-
fore, Theorem 18 shows that G is an isochronous set with
isochronous time t , for all t > 0.

2. On the noncompact simple Lie group G = SL(2, R), we consider
the system

ẋ = [X + uY ] x, x ∈ G, u ∈ R

where X =


1 2

−1 −1


and Y =


−1 0
0 1


. According to [13], see

also [14], the system is controllable. Thus, from Theorem 23, G can
be decomposed by isochronous rings of Σ .

3. Consider the bilinear control systemΣ onR3 determined by the
dynamic

ẋ = [X + uY ] x, x ∈ R3, −1 ≤ u ≤ 1

which is induced by its lifting the invariant control system on the
orthogonal group SO(3). HereX and Y generate the Lie algebra so(3)
of the skew symmetric real matrices of order 3. In [12], the authors
show that Σ is controllable at uniform time. But, the uniform
time cannot be arbitrary. It must be equal to or bigger than π .
Actually, through the homogeneous system p∗(Σ) induced on the
sphere S2 they prove that to connect any point of the Equator to
the north pole, π

2 units of time are necessary. Thus, in general the
isochronous time is not arbitrary.
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