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Abstract: Let A be a (m1 + m2) × (m1 + m2) blocked Wishart random
matrix with diagonal blocks of size m1 ×m1 and m2 ×m2. The goal of the
paper is to find the exact marginal distribution of the two diagonal blocks
of A. We find an expression for this marginal density involving the matrix-
variate generalized hypergeometric function. We became interested in this
problem because of an application in spatial interpolation of random fields
of positive-definite matrices, where this result will be used for parameter
estimation, using composite likelihood methods.
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1. Introduction

The goal of this paper is to find an exact and useful form for the marginal dis-
tribution of the diagonal blocks of a 2×2 blocked Wishart random matrix. This
problem arises in an applied problem, to estimate the parameters of a Wishart
random field, which will be reported elsewhere.

Let A be a (m1 + m2) × (m1 + m2) Wishart random matrix, where the di-
agonal blocks are of size m1 ×m1 and m2 ×m2, respectively. In our intended
application m1,m2 will be small integers, (and m1 = m2, but we choose to treat
the more general case). Write A =

(
A1 A12

A>12 A2

)
.
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Denote the number of freedom parameter by n and the scale parameter, which
is a matrix blocked in the same way as A, by Σ =

(
Σ1 Σ12

Σ>12 Σ2

)
. We are mostly

interested in the special case Σ =
(

Σ0 ρΣ0

ρΣ0 Σ0

)
where the absolute value of ρ is

less than one, but the general case is no more difficult.

All matrices are real. Notation: we use Tr(A) for the trace of the square ma-
trix A, and etr(A) = exp(Tr(A)). We write P+(m) for the convex cone of real
m×m positive definite matrices, and we write O(m) for the orthogonal group,
that is, the set of m×m orthogonal matrices. The Stiefel manifold, that is the
set of m1×m2 column orthogonal matrices, in which case necessarily m2 ≤ m1,
is written Vm2,m1

. We indicate the transpose of a matrix by an upperscript >.

In the convex cone of positive definite matrices, we use the cone order, de-
fined by A < B meaning that B − A is positive definite, written B − A > 0.
Integrals over cones are written as

∫ I
0
g(A) (dA) meaning the integral is taken

over the cone 0 < A < I. The multivariate gamma function is denoted by Γm(a)
for <(a) > m−1

2 , see (Muirhead, 1982) for proofs and properties.

In the second section we give some background information, especially about
the Jacobians which we need to evaluate the integrals. In section three we state
our results, and give proofs. In the final section we give some comments on the
result.

2. Background

The single most important reference for background material for this paper is
(Muirhead, 1982). Some results therefrom will not be cited directly.

When doing change of variables in a multiple integral we need to know the
Jacobian. Here we will list the ones we need, most can be found in (Muirhead,
1982) or in (Mathai, 1997). We are following the notation of (Muirhead, 1982).
First a very brief summary.

For any matrix X, let dX denote the matrix of differentials dxij . For an
arbitrary m1 ×m2 matrix X, the symbol (dX) denotes the exterior product of
the mn elements of dX:

(dX) ≡ ∧m2
j=1 ∧

m1
i=1 dxij . (1)

If X is a symmetric m2 ×m2 matrix, the symbol (dX) will denote the exterior
product of the m2(m2+1)

2 distinct elements of dX:

(dX) ≡ ∧1≤i≤j≤m2dxij . (2)

With similar definitions for other kinds of structured matrices.
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The following invariant form on the orthogonal group represents the Haar
measure,

(
H>dH

)
= ∧mi=1 ∧mj=i+1 h

>
j dhi. Here H represents an orthogonal ma-

trix. This form normalized to have total mass unity is represented by (dH).
We also need to integrate over a Stiefel manifold, then

(
H>dH

)
represents a

similarly defined invariant form, see (Muirhead, 1982).
Some needed jacobians are not in (Muirhead, 1982), so we give them here,

from (Díaz-García, González-Farias, 2005) and (Díaz-Garzía, Jaimez, Mardia,
1997).

Lemma 1. (Jacobian of the symmetric square root of a positive definite matrix).
Let S and R be in P+(m) such that S = R2 and let ∆ be a diagonal matrix with
the eigenvalues of R on the diagonal. Then,

(dS) = 2m det(∆)

m∏
i<j

(∆i + ∆j) (dR) =

m∏
i≤j

(∆i + ∆j) (dR)

This result can also be found in (Mathai, 1997). We need the generalized
polar decomposition of a rectangular matrix. Let C be an m1 ×m2 rectangular
matrix with m2 ≤ m1. Then we always have C = UH where H is positive
semi-definite, positive definite if C has full rank, and U is a m1 ×m2 column-
orthogonal matrix. In that last case, U is unique. See (Higham, 2008).

Lemma 2. (Generalized Polar decomposition) Let X be an m1×m2 matrix with
m1 ≥ m2 and of rank m2, with m2 distinct singular values. Write X = UH,
with U ∈ Vm2,m1

and H ∈ P+(m2). Then H has m2 distinct eigenvalues. Also
let ∆ be the diagonal matrix with the eigenvalues of H on the diagonal. Then

(dX) = det(∆)m1−m2

m2∏
i<j

(∆i + ∆j) (dH)
(
U>dU

)
.

Note that since this results are used for integration, the assumption of distinct
singular values is unimportant, since the subset where the singular values are
equal has measure zero.

3. Results

Let us state our main result:

Theorem 1. (The Marginal Distribution of the Diagonal Blocks of a Blocked
Wishart Random Matrix with Blocks of unequal sizes) Let A =

(
A1 A12

A>12 A2

)
be

a (m1 + m2) × (m1 + m2) blocked Wishart random matrix, where the diagonal
blocks are of size m1 ×m1 and m2 ×m2, respectively. The Wishart distribution
of A have n ≥ m1 + m2 degrees of freedom and positive definite scale matrix
Σ =

(
Σ1 Σ12

Σ>12 Σ2

)
blocked in the same way as A. The marginal distribution of the
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two diagonal blocks A1 and A2 have density function given by

c · etr

{
−1

2
(Σ−1

1 A1 + F>C2FA1 + C−1
2 A2)

}
· det(A1)(n−m2−1)/2

det(A2)(n−m1−1)/2
0F1

(
n/2

∣∣∣∣ 1

4
G

)
(3)

where C2 = Σ2 − Σ>12Σ−1
1 Σ12, F = C−1

2 Σ>12Σ−1
1 and G = A

1/2
2 FA1F

>A
1/2
2 .

c−1 = 2(m1+m2)n/2Γm1
(n/2)Γm2

(n/2) (det Σ)
n/2. 0F1 is the generalized matrix-

variate hypergeometric function, as defined in (Muirhead, 1982).

Note that the definition of the matrix-variate hypergeometric function is by
a series expansion, which is convergent in all cases we need, see (Muirhead,
1982). The rest of this section consists in a proof of this theorem.

Introduce the following notation: The Schur complements of Σ =
(

Σ1 Σ12

Σ>12 Σ2

)
is

C1 = Σ1−Σ12Σ−1
2 Σ>12 and C2 = Σ2−Σ>12Σ−1

1 Σ12. Then define F = C−1
2 Σ>12Σ−1

1 .
In the following we will be using some standard results on blocked matrices with-
out quoting them.

The Wishart density function of A written as a function of the blocks:

c · etr

(
−1

2

(
Σ−1

1 A1 + F>C2FA1 − 2F>A>12

)
+
(
C−1

2 A2

))
·det(A1)γ det(A2 −A>12A

−1
1 A12)γ

(4)

where c−1 = 2(m1+m2)n/2Γm1+m2
( 1

2n) (det Σ)
n/2 and γ = n−m1−m2−1

2 . In the
following we will work with the density concentrating on the factors depending
on A12. To prove the theorem we need to integrate out the variable A12. The
other variables, which are constant under the integration, will be concentrated
in one constant factor. So we repeat the formula (4) written as a differential
form with the constants left out.

K1 · etr(FA12) det(A2 −A>12A
−1
1 A12)γ (dA12) (5)

where K1 = c · etr
(
− 1

2 (Σ−1
1 A1 + F>C2FA1

)
etr
(
− 1

2C
−1
2 A2)

)
det(A1)γ . Now,

to find the marginal distribution of the diagonal blocks, we need to integrate
over the off-diagonal block A12. Under this integration the value of the diago-
nal blocks A1 and A2 will remain fixed, and the region of integration will be
a subset of Rm1×m2 consisting of the matrices A12 such that the block matrix
A =

(
A1 A12

A>12 A2

)
is positive definite. This seems like a complicated set, but we

can give a simple description of it using the polar decomposition of a matrix.
Note that this is one of the key observations for the proof, and this authors has
not seen any use of this observation earlier.
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Now we need to assume that m1 ≥ m2. For the opposite inequality a parallell
development can be given, using the other factorization detA = det(A2) det(A1−
A12A

−1
2 A>12). From for instance Theorem 1.12 in (Fuzhen Zhang et. al., 2005)

it follows that the region of integration is the set

{A12 ∈ Rm1×m2 : 0 < A>12A
−1
1 A12 < A2} (6)

Introduce E = A
−1/2
2 A>12A

−1/2
1 where we use the usual symmetric square root.

Then in terms of the new variable E the region of integration becomes

{E> ∈ Rm1×m2 : 0 < EE> < I} (7)

and with the generalized polar decomposition in the form E> = UP with P ∈
P+(m2), U ∈ Vm2,m1 , EE> = P 2 so the region of integration can be written as

{P ∈ P+(m2), U ∈ Vm2,m1
: 0 < P 2 < I} (8)

which is a Cartesian product of a cone interval with a Stiefel manifold.

The Jacobian of the transformation from A12 to E is
(dE) =

(
dE>

)
= det(A2)−m1/2 det(A1)−m2/2 (dA12). The Jacobian of the po-

lar decomposition E> = UP is (dE) =
(
dE>

)
= (det ∆)m1−m2

∏m2

i<j(∆i −
∆j) (dP )

(
U>dU

)
where ∆ is a diagonal matrix with the eigenvalues of P on the

diagonal. See lemma (2). A last transformation will be useful. Define P 2 = X.
The Jacobian of this transformation is (dX) = 2m2 det ∆

∏m2

i<j(∆i + ∆j) (dP ),
∆ is as above. See lemma (1)

Applying this transformations the integral of (5) can be written as

K2·
∫ I

0

∫
Vm2,m1

etr(X1/2A
1/2
2 FA

1/2
1 U) det(I−X)γ det(X)(m1−m2−1)/2 (dX)

(
U>dU

)
(9)

where the constant
K2 = 2−m2c etr

(
− 1

2 ((Σ−1
1 + F>C2F )A1 + C−1

2 A2)
)
·(detA1)γ+m2/2(detA2)γ+m1/2

We are ready to perform the integration over the Stiefel manifold. For this
purpose we need a generalization of the following result from (, Muirhead, 1982,
Theorem 7.4.1, page 262), which we cite here.

Let X be an m × n real matrix with m ≤ n and H = [H1 : H2] an n × n
orthogonal matrix, where H1 is n×m. Then∫

O(n)

etr(XH1) (dH) = 0F1

(
n/2

∣∣∣∣ 1

4
XX>

)
. (10)

But we have an integral over the Stiefel manifold, not the orthogonal group, so
we need now to generalize the result (10) to an integral over the Stiefel manifold.
What we need is the following. Let Vm2,m1

be the manifold of m1 ×m2 column
orthogonal matrices withm2 ≤ m1, and let f be a function defined on the Stiefel
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manifold. We can extend this function to a function defined on O(m1) in the
following way. Let U be anm1×m2 orthogonal matrix, and write it in block form
as [U1 : U2] such that U1 ∈ Vm2,m1

. How can we characterize the set of U2 which
is complementing U1 to form an orthogonal matrix? First, let U2 be an fixed, but
arbitrary such matrix. Then clearly any otherm1×(m1−m2) column orthogonal
matrix with the same column space also works. The common column space is
the orthogonal complement of the column space of U1. The set of such matrices
can be described as {V ∈ Vm1−m2,m1

: V = U2Q for Q ∈ O(m1 −m2) }. For
this set we write VH1

m1−m2,m1
. As a set we can identify this with O(m1 −m2).

Specifically, we can identify U2 with the very special column orthogonal matrix(
0m2×m1−m2

Q

)
where Q ∈ O(m1−m2) which clearly forms a proper submanifold

of the Stiefel manifold Vm1−m2,m1
. The function f can now be extended to the

orthogonal group by defining f(U) = f([U1 : U2]) = f(U1) and for the integral
we find that∫

O(m1)

f(U1)
(
U>dU

)
=∫

Vm2,m1

∫
VH1

m1−m2,m1

f([U1 : U2])
(
U>dU

)
=∫

Vm2,m1

f(U1)
(
U>1 dU1

) ∫
VH1

m1−m2,m1

(
Q>dQ

)
=

VolO(m1 −m2)

∫
Vm2,m1

f(H1)
(
H>1 dH1

)
. (11)

Returning to our integral, the integral over the Stiefel manifold occurring in
(9) can now be written as∫
Vm2,m1

etr(X1/2A
1/2
2 FA

1/2
1 U)

(
U>dU

)
=

1

Vol(O(m1 −m2))

∫
O(m1)

etr(X1/2A
1/2
2 FA

1/2
1 U1)

(
U>dU

)
where U1 consistes of the m2 first columns of U

=
Vol(O(m1))

Vol(O(m1 −m2))

∫
O(m1)

etr(X1/2A
1/2
2 FA

1/2
1 U1) (dU)

=
Vol(O(m1))

Vol(O(m1 −m2))
0F1

(
m1

2

∣∣∣∣ 1

4
A

1/2
2 FA

1/2
1 XA

1/2
1 F>A

1/2
2

)
(12)

where we did use (10). Here Vol(O(m)) = 2mπm2/2

Γm(m/2) is the volume of the or-
thogonal group, see (Muirhead, 1982). The differential form (dU) denotes Haar
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measure normalized to total mass unity.

Now write G = A
1/2
2 FA1F

>A
1/2
2 then we can write (9) as

K2
Vol(O(m1))

Vol(O(m1 −m2))

∫ I

0

(detX)
(m1−m2−1)/2

det(I−X)γ 0F1

(
m1

2

∣∣∣∣ 1

4
GX

)
(dX)

(13)
and to evaluate this integral we need another result from (, Muirhead, 1982,
theorem 7.2.10, page 254), we do not state it here.

Using this we find a result we need for the integral of an hypergeometric
function, by using the series expansion definition of the hypergeometric function
and integrating term by term:

Theorem 2. If Y is a symmetric m×m matrix we have that∫ I

0

det(X)a−(m+1)/2 det(I −X)b−(m+1)/2
pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣XY ) (dX) =

Γm(a)Γm(b)

Γm(a+ b)
p+1Fq+1

(
a1, . . . , ap, a

b1, . . . , bq, a+ b

∣∣∣∣Y ) (14)

so both degrees of the hypergeometric function are raised by one.

The proof is a simple calculation that we leave out.

Now using (14) to calculate (13) we get, finally, the result

K2 ·
Vol(O(m1))

Vol(O(m1 −m2))

Γm2
(m/2)Γm2

((n−m1)/2)

Γm2(n/2)

1F2

(
m1/2

m1/2, n/2

∣∣∣∣ 1

4
G

)
(15)

but note that one pair of upper and lower arguments to the hypergeometric
function are equal, those clearly cancels. With a little algebra we complete the
proof of our main theorem.

4. Some Final Comments

To help interpret our main result, we calculated the conditional distribution
of the matrix A1 given the matrix A2. We will not give the full details of the
calculation here, but only give the result. The density of A1 given that A2 = a2

has the density given by

1

2mn/2Γm(n/2) det(C1)n/2
etr(−1

2
C−1

1 A1) det(A1)(n−m−1)/2

· etr(−1

2
Ω) 0F1

(
n/2

∣∣∣∣ 1

4
ΩC−1

1 A1

)
, (16)
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where we have given the conditional density only for the special case Σ =(
Σ0 ρΣ0

ρΣ0 Σ0

)
. For this case we have, with the notation from the main theorem,

C1 = C2 = (1 − ρ2)Σ0, F = ρ
1−ρ2 Σ−1

0 , and F> C2F = ρ2

1−ρ2 Σ−1
0 . We have

defined Ω = ρ2C−1
1 a2, which can be seen as a non-centrality parameter. The

density above is equal to the non-central Wishart distribution given in (, Muir-
head, 1982, Theorem 10.3.2). We see that the conditional distribution is a kind
of non-central Wishart distribution, where the non-centrality parameter Ω de-
pends on the conditioning matrix A2. In this way, the effect of the conditioning is
to change the distribution of A1, which in the marginal case is central Wishart,
to a noncentral Wishart distribution, with non-centrality parameter depending
on the conditioning tensor.

As said in the introduction, this result will be used for modelling of a spatial
random field of tensors, where we will estimate the parameters using compos-
ite likelihood. This application will be reported elsewhere. For that application
we will need to calculate values of matrix-variate hypergeometric functions nu-
merically. A paper giving an efficient method for summing the defining series
is (Koev, Edelman, 2006), with associated matlab implementation. The paper
[Butler and Wood (2003)) give a Laplace approximation for the case we need,
the 0F1 function.
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