A generalization of the Minkowski embedding theorem and applications

Marko Rojas-Medar a, Rodney C. Bassanezi a,*, Heriberto Román-Flores b

aIMECC-UNICAMP, C.P. 6051, 13081, Campinas-SP, Brazil
bDepartamento de Matemática, Universidad de Tarapacá, Casilla 7D, Arica, Chile

Received August 1994; received in revised form March 1997

Abstract

Puri and Ralescu (1985) gave, recently, an extension of the Minkowski Embedding Theorem for the class E_L of fuzzy sets u on \mathbb{R}^n with the level application $\alpha \mapsto L_u$ Lipschitzian on the $C([0,1] \times S^{n-1})$ space. In this work we extend the above result to the class E_C of level-continuous applications. Moreover, we prove that E_C is a complete metric space with $E_L \subset E_C$ and $E_C = E_L$. To prove the last result, we use the multivalued Bernstein polynomials and the Vitali's approximation theorem for multifunction. Also, we deduce some properties in the setting of fuzzy random variable (multivalued).

© 1999 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy sets; Set-convergences; Hausdorff metric; Integration of multifunctions; Multivalued Bernstein polynomial; Minkowski Embedding Theorem; Support functions

1. Introduction

Recently, Puri and Ralescu [15] showed that there is an embedding $j: E_L \rightarrow C([0,1] \times S^{n-1})$, where E_L is the subspace of (E^n, D) with Lipschitzian levels and E^n denote the class of normal convex fuzzy sets with compact support. This fact is very important, since (E^n, D) is not separable and this is an empeachment to develop clearly an integration theory for the fuzzy random variables. Unfortunately (E_L, D) is not a complete subspace of (E^n, D) as will be shown in Section 4. We observe that the application j can be defined by the same expression as in [14, 15] for all E^n (obviously with a different image space). So the following question is raised: is there some subspace of (E^n, D) that is separable and complete for the metric D and in such a manner that it is still embedded in $C([0,1] \times S^{n-1})$ for all n?

In this paper, we prove that the space that answers the above question is E_C, which consists of the fuzzy sets with levels continuous; also we prove that $E_L \not\subset E_C$ and that E_C is the maximal subspace of E^n with this property and $E_L = E_C$ (see Section 3). Also, we give some applications for the theory of fuzzy random variables (see Section 4). Actually, it was only for simplicity that we derived our results

*Corresponding author.

1Research partially supported by the “Dirección de Investigación y Desarrollo de la Universidad de Tarapacá”, through Project 4731-92.

0165-0114/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0165-0114(97)00120-6
in \mathbb{R}^n; they extend easily to the case of real separable Banach Spaces.

To stress the importance of the embedding j, we recall that Kaleva [10] used the embedding j together with one characterization of the fuzzy compact subsets of \mathbb{E}^n, see [7], in the subclass of \mathbb{E}_L^n, which he called equi-Lipschitzian, to demonstrate the existence of the solutions of the Cauchy Problem for fuzzy differential equations with values in the equi-Lipschitzian subsets. Also, Puri and Ralescu used the embedding to study fuzzy random variables and the convergences of fuzzy martingales.

In a previous work [18], we proved the equivalence of the various notions of convergence in the class of fuzzy sets with continuous levels, but not necessarily with convex levels. Obviously, these results are true for \mathbb{E}^2.

In a forthcoming paper we will describe applications to the problem of the convergence of fuzzy martingales (multivalued).

2. Preliminaries

In the sequel $\mathcal{K}(\mathbb{R}^n)$ will denote the set of the nonempty compact-convex subsets of \mathbb{R}^n. The Hausdorff metric H over this class is defined by

$$H(A, B) = \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\},$$

where d is usual distance, and $d(a, B) = \sup_{b \in B} d(a, b)$.

It is well known that $(\mathcal{K}(\mathbb{R}^n), H)$ is a separable complete metric space (see [6, 14]).

We can understand a fuzzy set in \mathbb{R}^n as a function $u: \mathbb{R}^n \to [0, 1]$. As an extension of $\mathcal{K}(\mathbb{R}^n)$, we define the space \mathbb{E}^n of fuzzy sets $u: \mathbb{R}^n \to [0, 1]$, with the following properties:

(i) u is normal, i.e., $\{x \in \mathbb{R}^n | u(x) = 1\} \neq \emptyset$;

(ii) u is fuzzy-convex, i.e., for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have,

$$u(\lambda x + (1 - \lambda)y) \geq \min\{u(x), u(y)\};$$

(iii) u is upper semicontinuous;

(iv) The closure of the set $\{x \in \mathbb{R}^n | u(x) > 0\}$ is a nonempty compact subset in \mathbb{R}^n. This set is called the support of u and it is denoted by $L_0 u$.

The linear structure in \mathbb{E}^n is defined by the operations

$$(u + v)(x) = \sup_{y + z = x} \min\{u(y), v(z)\},$$

$$\lambda u(x) = \begin{cases} u(x/\lambda) & \text{if } \lambda \neq 0, \\ \chi_{\{0\}}(x) & \text{if } \lambda = 0, \end{cases}$$

where $u, v \in \mathbb{E}^n$, $\lambda \in \mathbb{R}$ and χ_A denote the characteristic function of A.

Recall that every fuzzy set is characterized by its family of α-level ($\alpha \in (0, 1]$), where the α-level of u is defined by

$$L_\alpha u = \{x \in \mathbb{R}^n | u(x) \geq \alpha\}.$$

We observe that $L_0 u \supseteq L_\alpha u \supseteq L_\beta u$ for all $0 \leq \alpha \leq \beta$. So if $u \in \mathbb{E}^n$, then $L_{\alpha} u \in \mathcal{K}(\mathbb{R}^n)$ for all $\alpha \in [0, 1]$.

Moreover, the linear structure in terms of the family $(L_\alpha u)$ is given by

$$L_\alpha (u + v) = L_\alpha u + L_\alpha v \quad (1)$$

and

$$L_\alpha (\lambda u) = \lambda L_\alpha u \quad (2)$$

for all $\alpha \in [0, 1]$.

We extend the Hausdorff metric by defining the D-metric:

$$D(u, v) = \sup_{0 < \alpha < 1} H(L_\alpha u, L_\alpha v).$$

Concerning the properties of this space, Puri and Ralescu [15] proved that (\mathbb{E}^n, D) is a complete metric space; Kaleva proved that (\mathbb{E}^n, D) is not separable ([10], see Example 2.1).

The D-metric is homogeneous and invariant by translations under the operations (1) and (2), and consequently, applying the theorem of Radström [17], Diamond and Kloeden [7], Kaleva [10] and, Puri and Ralescu [15] showed that \mathbb{E}^n can be embedded as a convex cone in certain Banach spaces.

We denote by \mathbb{E}_L^n the subspace of \mathbb{E}^n for which the elements u are such that the mapping $\alpha \to L_\alpha u$ is H-continuous on $[0, 1]$, i.e., given $\epsilon > 0$, there is a $\delta > 0$ such that

$$|\alpha - \beta| < \delta \Rightarrow H(L_\alpha u, L_\beta u) < \epsilon.$$

Since $[0, 1]$ is a compact metric space, the application $\alpha \to L_\alpha u$ is, in fact, uniformly continuous.
Also, we denote by \(E_\beta \) the subspace of \(E_\alpha \) for which the elements \(u \) are such that the application \(x \rightarrow L_\alpha u \) is Lipschitz continuous, i.e., there is a \(v > 0 \) such that, for all \(x, \beta \in [0, 1] \)
\[
H(L_\alpha u, L_\beta u) \leq v |x - \beta|.
\]

The following example shows that \(E_\alpha \not\subset E_\beta \).

Example 2.1. Let \(u: \mathbb{R} \rightarrow [0, 1] \) defined by
\[
u(x) = \begin{cases} x^2 & \text{if } x \in [0, 1] \\ 0 & \text{if } x \in (0, 1) \cup (1, \infty) \end{cases}
\]
Then, \(L_\alpha u = \sqrt{x}, 1 \) for all \(x \in [0, 1] \). Consequently,
\[
H(L_\alpha u, L_\beta u) = |\sqrt{x} - \sqrt{\beta}| = \frac{1}{\sqrt{x} + \sqrt{\beta}} |x - \beta|
\]
for all \(x \neq \beta \). So \(u \in E_\alpha \setminus E_\beta \).

By using the following properties of the \(H \)-metric,
\[
H(A + B, C + D) \leq H(A, C) + H(B, D),
\]
\[
H(\lambda A, \lambda B) = \lambda H(A, B)
\]
for all \(A, B \in \mathcal{K}(\mathbb{R}^n) \) and \(\lambda > 0 \), we deduced that \(E_\alpha \) and \(E_\beta \) are closed under the operations (1) and (2).

Moreover, recall that the support function of a nonempty subset \(A \) of \(\mathbb{R}^n \) is the function \(s_A: S^{n-1} \rightarrow \mathbb{R} \) defined by
\[
s_A(x) = \sup \{ \langle x, \alpha \rangle / \alpha \in A \},
\]
where \(S^{n-1} = \{ x \in \mathbb{R}^n / \| x \| = 1 \} \) and \(\langle \cdot, \cdot \rangle \) denotes the inner product in \(\mathbb{R}^n \). If we take \(A \in \mathcal{K}(\mathbb{R}^n) \), then
\[
s_A(x) = \max \{ \langle x, \alpha \rangle / \alpha \in A \}.
\]

Some properties of the function \(s_A(\cdot) \) are
\[
s_{A+B} = s_A + s_B, \quad (3)
\]
\[
s_{\lambda A} = \lambda s_A, \quad (4)
\]
\(s_A \) is Lipschitz continuous with constant:
\[
\| A \| = H(\{0\}, A). \quad (5)
\]

Moreover, the \(H \)-metric can be written as
\[
H(A, B) = \max \{ |s_A(x) - s_B(x)| ; x \in S^{n-1} \}. \quad (6)
\]

The above result can be seen in [2] or [4]. We consider \(C(S^{n-1}) = \{ f: S^{n-1} \rightarrow \mathbb{R} ; f \text{ is continuous} \} \) with usual norm \(\| . \|_\infty \) of uniform convergence.

The following Embedding Theorem is due to Minkowski:

Theorem 2.2. The application \(j: \mathcal{K}(\mathbb{R}^n) \rightarrow C(S^{n-1}) \) defined by \(j(A) = s_A \) is positively homogeneous, additive, and it is also an isometry.

Puri and Ralescu [15] extended the definition of support functions to the fuzzy context setting
\[
s_u(\alpha, x) = s_{L_\alpha u}(x)
\]
for all \((\alpha, x) \in [0, 1] \times S^{n-1} \) (see also [5]).

It is easily seen that \(s_{u+v} = s_u + s_v \) and \(s_{\lambda u} = \lambda s_u \) for all \(u, v \in \mathbb{E}_\alpha^\beta \) and \(\lambda > 0 \). We denote by \(C([0, 1] \times S^{n-1}) = \{ f: [0, 1] \times S^{n-1} \rightarrow \mathbb{R} ; f \text{ continuous} \} \) with the usual norm.

One of the principal results of [15] is

Theorem 2.3. The application \(j: E_\alpha^\beta \rightarrow C([0, 1] \times S^{n-1}) \) defined by \(j(u) = s_u \) is positively homogeneous, additive, and it is also an isometry. Moreover, \(j(u) \) is Lipschitz continuous.

3. The isometry \(j \) defined on \(E_\alpha^\beta \)

Our purpose in this section is to show that \(E_\alpha^\beta \) is a complete metric space and that \(j \) is an isometry when defined on \(E_\alpha^\beta \) with values on \(C([0, 1] \times S^{n-1}) \). Also, we will show that \(\mathcal{E}_\beta \) is dense in \(E_\alpha^\beta \) and that \(E_\alpha^\beta \) is the maximal subspace of \(E_\alpha^\beta \) with this property.

Theorem 3.1. \((E_\alpha^\beta, D)\) is a complete metric space.

Proof. Let \((u_p)\) a \(D \)-Cauchy sequence in \(E_\alpha^\beta \). Then, by using the completeness of \(E_\alpha^\beta \), we deduce that there exist \(u \in E_\alpha^\beta \) such that \(u_p \xrightarrow{D} u \).

In continuation, we prove that \(u \in E_\alpha^\beta \). In fact, given \(\varepsilon > 0 \) there is \(n \in \mathbb{N} \) such that \(D(u_p, u) < \frac{1}{n} \varepsilon \) for all \(p \geq n \). For a fixed \(p_0 > n \), we have that there exist \(\delta = \delta(\varepsilon, p_0) > 0 \) such that
\[
|\alpha - \beta| < \delta \Rightarrow H(L_\alpha u_p, L_\beta u_p) < \frac{1}{2} \varepsilon,
\]
for all \(|\alpha - \beta| < \delta \). So, \(u \in E_\alpha^\beta \) and this completes the proof. \(\Box \)
To show the density of \(\mathbb{E}_L^n \) in \(\mathbb{E}_F^n \), we will use the Kuratowski’s limits related with the \(H \)-convergence.

If \(A_q \) is a sequence of subsets of \(\mathbb{R}^n \), we define the lower and upper limits in the Kuratowski sense as

\[
\lim_{q \to \infty} \inf A_q = \left\{ x \in \mathbb{R}^n \mid x = \lim_{q \to \infty} x_q, x_q \in A_q \right\}
\]

and

\[
\lim_{q \to \infty} \sup A_q = \left\{ x \in \mathbb{R}^n \mid x = \lim_{j \to \infty} x_q, x_q \in A_q \right\}
\]

respectively.

We say that a sequence of sets \(A_q \) converges to a set \(A \), \(A \subseteq \mathbb{R}^n \), in the Kuratowski sense, if \(\lim_{q \to \infty} \inf A_q = \lim_{q \to \infty} \sup A_q = A; \) in this case, we write \(A = \lim_{q \to \infty} A_q \) or \(A_q \xrightarrow{K} A \), and we say that \(A_q \) \(K \)-converges to \(A \).

The Kuratowski limits are closed sets. Moreover, the following relations are true:

\[
\lim_{q \to \infty} \inf A_q \subseteq \lim_{q \to \infty} \sup A_q,
\]

\[
\lim_{q \to \infty} \inf A_q = \lim_{q \to \infty} \inf A_q,
\]

\[
\lim_{q \to \infty} \sup A_q = \lim_{q \to \infty} \sup A_q.
\]

The following result is well known (see [14]).

Lemma 3.2. A sequence \((A_q) \subseteq \mathcal{K}(\mathbb{R}^n) \) converges to a compact set \(A \) with respect to the Hausdorff metric if and only if there is a \(K \in \mathcal{K}(\mathbb{R}^n) \) such that \(A_q \subseteq K \) for all \(q \) and

\[
\lim_{q \to \infty} \inf A_q = \lim_{q \to \infty} \sup A_q = A.
\]

Theorem 3.3. \(\mathbb{E}_L^n = \mathbb{E}_F^n \).

Proof. Let \(u \in \mathbb{E}_F^n \), then the multifunction \(F: [0, 1] \to \mathcal{K}(\mathbb{R}^n) \) given by \(F(\alpha) = L_{x, u} \) is \(H \)-continuous on \([0, 1]\). We consider the \(q \)th Bernstein polynomial \(B_q(F; \alpha) \) associated with \(F \):

\[
B_q(F; \alpha) = \sum_{j=0}^{q} \binom{q}{j} F\left(\frac{j}{q}\right) \alpha^j(1 - \alpha)^{q-j}, \quad 0 \leq \alpha \leq 1
\]

Vitale [20] has proved that

\[
D(F, B_q(F, \cdot)) \to 0 \quad \text{as} \quad q \to +\infty.
\]

We observe that \(B_q(F; \alpha) \in \mathcal{K}(\mathbb{R}^n) \) for each \(q \in \mathbb{N} \) and \(\alpha \in [0, 1] \). Now we verify the hypothesis of the Representation Theorem given by Negoita and Ralescu [13] to show that the family \(N_q = B_q(F; \alpha) \), for each \(q \in \mathbb{N} \), define an unique fuzzy set. If \(\alpha \leq \beta \), then \(F(\alpha) \supseteq F(\beta) \) and, consequently, \(B_q(F; \alpha) \supseteq B_q(F; \beta) \) (see [20, p. 312]). So, we only have to prove that, if \(x_1 \leq x_2 \leq \cdots \leq x_l \to \alpha \neq 0 \) as \(l \to \infty \), then

\[
B_q(F; \alpha) = \bigcap_{l=1}^{\infty} B_q(F; x_l).
\]

We observe that \(\alpha \to B_q(F; \alpha) \) is a \(H \)-continuous multifunction, consequently, for each fixed \(q \), we have

\[
B_q(F; \alpha) \xrightarrow{H} B_q(F; \alpha) \quad \text{as} \quad l \to \infty,
\]

as \(B_q(F; \alpha) \in \mathcal{K}(\mathbb{R}^n) \), and we deduce from the Lemma 3.2 that

\[
B_q(F; \alpha) \xrightarrow{K} B_q(F; \alpha) \quad \text{as} \quad l \to \infty. \tag{7}
\]

Being \(\{B_q(F; \alpha)\}_{l \in \mathbb{N}} \), one decreasing sequence, we have

\[
B_q(F; \alpha) = \bigcap_{l=1}^{\infty} B_q(F; \alpha) \quad \text{as} \quad l \to \infty.
\]

So it follows from (7) that it holds the required equality.

This completes the hypothesis of the Negoita–Ralescu theorem.

Finally, we prove that \(\alpha \to B_q(F; \alpha) \) for each \(q \in \mathbb{N} \) is a Lipschitzian application. By virtue of (6) it is sufficient to show that

\[
\max \{ |s_{B_q(F, \alpha)}(x) - s_{B_q(F, \beta)}(x)| ; \ x \in S^{n-1} \} \leq C|\alpha - \beta|
\]

with \(C > 0 \) independent of \(\alpha \) and \(\beta \).

Note that the support function of Bernstein approximant of \(F \) is given by

\[
s_{B_q(F, \alpha)}(x) = \sum_{j=0}^{q} \binom{q}{j} x^j(1 - x)^{q-j} s_{F(\cdot)}(x)
\]
with \(x \in S^{n-1} \), so that
\[
|s_{B_{\epsilon}}(x) - s_{B_{\beta}}(x)|
\leq \sum_{j=0}^{q} \binom{q}{j} |s_{F_{j}}(x)||x^{j}(1-x)^{q-j} - \beta^{j}(1-\beta)^{q-j}|
\leq |s_{F_{0}}|_{\infty} \sum_{j=0}^{q} \binom{q}{j} |x^{j}(1-x)^{q-j} - \beta^{j}(1-\beta)^{q-j}|
\leq C|\alpha - \beta|.
\]

Since

\[
F(0) \supseteq F\left(\frac{1}{q}\right) \supseteq F(1) \quad \forall 0 < j < q
\]

implies that
\[
s_{F_{1}}(x) \leq s_{F_{q}}(x) \leq s_{F_{0}}(x)
\]

for all \(x \in S^{n-1} \). This completes the proof.

Now, we give an extension of the Theorem 2.3.

Theorem 3.4. The application \(j: \mathbb{E}_{C}^{n} \to C([-1, 1] \times S^{n-1}) \) defined by \(j(u) = s_{u} \) is positively homogeneous, additive and it is also an isometry.

Proof. Since \(\mathbb{E}_{L} \) is dense in \(\mathbb{E}_{C}^{n} \), \(j: \mathbb{E}_{C}^{n} \to C([-1, 1] \times S^{n-1}) \) has a unique uniformly continuous extension to \(\mathbb{E}_{C}^{n} \) and it is easy to show that the extension is also an isometry, see, for instance, [8] or [1].

Since \([0, 1] \times S^{n-1}\) is compact, we can deduce immediately the following:

Corollary 3.5. \((\mathbb{E}_{C}^{n}, D)\) is a separable metric space.

Corollary 3.6. If \(u_{p}, u \in \mathbb{E}_{C}^{n} \), then \(u_{p} \to u \) iff \(s_{u_{p}} \to s_{u} \) uniformly on \([0, 1] \times S^{n-1}\).

In what follows, we show that \(\mathbb{E}_{C}^{n} \) is the maximal subspace of \(E^{n} \) that can be embedded in \(C([-1, 1] \times S^{n-1}) \) through the isometry \(j \).

Theorem 3.7. Let \(u \in \mathbb{E}_{C}^{n} \backslash \mathbb{E}_{C}^{n} \) be, then \(j(u) \notin C([-1, 1] \times S^{n-1}) \).

Proof. Let \(j(u) \in C([-1, 1] \times S^{n-1}) \) then, for all \(\varepsilon > 0 \), there exists \(\delta > 0 \), such that,
\[
|| (\alpha, x), (\beta, y) || < \delta \Rightarrow |j(u)(\alpha, x) - j(u)(\beta, y)| < \varepsilon. \tag{\ast}
\]

If we suppose that \(u \notin \mathbb{E}_{C}^{n} \) with \(j(u) \in C([-1, 1] \times S^{n-1}) \), we have that the map \(\alpha \to L_{u} \) is not continuous: consequently there exists \(\varepsilon > 0 \) such that for all \(\delta > 0 \), we can take \(\alpha \) and \(\beta \) with \(|\alpha - \beta| < \delta \) and
\[
H(L_{u}, L_{\beta}) = \sup_{x \in S^{n-1}} \{|j(u)(\alpha, x) - j(u)(\beta, x)|\} > \varepsilon.
\]

Now through the compactness of \(S^{n-1} \) and the continuity of \(j(u) \), there exists \(x_{0} \in S^{n-1} \) such that
\[
|j(u)(\alpha, x_{0}) - j(u)(\beta, x_{0})| > \varepsilon
\]

i.e. a contradiction with (\ast). \(\Box \)

Remark 3.8. Theorem 3.4, together with Theorem 3.7 provides a complete characterization for \(j \) to be an isometry with values in \(C([-1, 1] \times S^{n-1}) \).

We proved in [18, Lemma 3.13] the following result: \(u \in \mathbb{E}_{C}^{n} \) if and only if
\[
L_{u} = \{ x | u(x) > \alpha \} \quad \forall \alpha \in (0, 1).
\]

This property does not suppose any convexity hypothesis on \(L_{u} \). The above characterization is equivalent to say that \(u \) is without proper local maximum points (see [18, p. 223]). Another characterization was given by Ming [12, p. 316]: \(u \in \mathbb{E}_{C}^{n} \) if and only if for any \(\alpha \in (0, 1) \)
\[
u^{\alpha} = \{ x | u(x) = \alpha \}
\]

has no interior point in the subspace \(L_{u} \).

We were informed by the anonymous referee that Theorem 3.4 is coincident with Theorem 3.3 in [12]. However, the techniques and arguments used are totally different.

Remark 3.9. Theorem 3.3 shows that \(\mathbb{E}_{C}^{n} \) is an incomplete metric space.

4. Applications

In this section we give some applications of our previous results to the convergence of the fuzzy random variables in \(\mathbb{E}_{C}^{n} \).

We will briefly go over some basic material on the measurability and integration of multifunctions that we will need in the sequel. For more details we
refer to Aumann [3], Castaing and Valadier [6], Hukuhara [9] and, Klein and Thompson [14].

Let \(P(\mathbb{R}^n) \) be the set of nonempty subsets of \(\mathbb{R}^n \) and \((\Omega, \Sigma, \mu)\) a complete finite measure space. Let \(F: \Omega \to P(\mathbb{R}^n) \) be a multifunction from \(\Omega \) onto \(\mathbb{R}^n \). Let \(\text{Gr}(F) = \{(w, x) \in \Omega \times \mathbb{R}^n / x \in F(w)\} \) be the graph of \(F \). We say that \(F \) is measurable if \(\text{Gr}(F) \subseteq \Sigma \times \mathcal{B}(\mathbb{R}^n) \), where \(\mathcal{B}(\mathbb{R}^n) \) is the Borel \(\sigma \)-field of \(\mathbb{R}^n \).

For any multifunction \(F: \Omega \to P(\mathbb{R}^n) \) we can define the set \(S(F) = \{ f \in L^1(\Omega, \mathcal{B}(\mathbb{R}^n)) / f(w) \in F(w), \mu - \text{a.e.} \} \), i.e., \(S(F) \) contains all integrable selectors of \(F \). The integral introduced by Aumann [2] as a generalization of the single-valued integral and of the Minkowski sum of sets is defined by

\[
\int_{\Omega} F(w) \, d\mu(w) = \left\{ \int_{\Omega} f(w) \, d\mu(w) \mid f \in S(F) \right\}.
\]

and denoted simply by \(\{F\} \).

It is natural to ask under what conditions \(\{F\} \) (or equivalently, \(S(F) \)) is nonempty. The multifunction \(F \) will be called integrably bounded if there exist \(\varphi \in L^1(\Omega, \mathbb{R}) \) such that \(\|x\| \leq \varphi(w) \mu - \text{a.e.} \), almost all \(x \) and \(w \) such that \(x \in F(w) \).

Theorem 4.1. If the measure \(\mu \) on the \(\sigma \)-algebra \(\Sigma \) of \(\Omega \) is atomless, then the integral \(\{F\} \) is a convex set.

Theorem 4.2. If \(F \) is integrably bounded and \(F(w) \) is closed for almost all \(w \in \Omega \), then \(\{F\} \subseteq \mathcal{K}(\mathbb{R}^n) \).

Also, we mention the following generalization of Lebesgue’s dominated convergence theorem.

Theorem 4.3. If \(F_\alpha: \Omega \to P(\mathbb{R}^n) \) are measurable and there is an \(f \in L^1(\Omega, \mathbb{R}) \) such that \(\sup_{p \geq 1} \|g_p(w)\| \leq f(w) \) for all \(g_p \in S(F_\alpha) \), then if \(F_\alpha(w) \subseteq F(w) \) we have

\[
\int_{\Omega} F_\alpha \to \int_{\Omega} F \quad \text{as} \quad p \to \infty.
\]

Theorem 4.4. Let \(F: \Omega \to P(\mathbb{R}^n) \) be measurable and integrably bounded, if \(\pi \) is a linear form over \(\mathbb{R}^n \), then

\[
\sup \pi \left(\int_{\Omega} F \, d\mu \right) = \int \sup \pi(F(w)) \, d\mu(w).
\]

A fuzzy random variable is a function \(\Gamma: \Omega \to \mathbb{E}^n \) such that for every \(\alpha \in [0, 1] \) the multifunction \(\Gamma_\alpha: \Omega \to P(\mathbb{R}^n) \) defined by \(\Gamma_\alpha(w) = L_\alpha \Gamma(w) \) is measurable [10]. Moreover, we say that \(\Gamma \) is integrably bounded if \(\Gamma_\alpha \) is integrably bounded for all \(\alpha \in [0, 1] \). We observe that for \(\Gamma \) to be integrably bounded it is necessary and sufficient that \(\Gamma_0 \) be integrably bounded; this is a consequence of the following fact: \(0 \leq \alpha \leq \beta \) implies \(\Gamma_\beta(w) \subseteq \Gamma_\alpha(w) \subseteq \Gamma_0(w) \), for all \(w \in \Omega \).

The following theorem due to Puri and Ralescu [15] allows us to define the integral of a fuzzy random variable \(\Gamma: \Omega \to \mathbb{E}^n \).

Theorem 4.5. If \(\Gamma: \Omega \to \mathbb{E}^n \) is an integrably bounded fuzzy variable, there exists a unique fuzzy set \(u \in \mathbb{E}^n \) such that \(L_\alpha u = \int \Gamma_\alpha \, d\mu \), for every \(\alpha \in [0, 1] \).

The element \(u \in \mathbb{E}^n \) obtained in Theorem 4.5 defines the integral of the fuzzy random variable \(\Gamma \), i.e.,

\[
\int \Gamma \, d\mu = u \iff L_\alpha u = \int \Gamma_\alpha \, d\mu, \quad \text{for every} \quad \alpha \in [0, 1].
\]

Theorem 4.6. Let \(\Gamma: \Omega \to \mathbb{E}^n \) be a fuzzy random variable integrably bounded, then \(\{\Gamma\} \subseteq \mathbb{E}^n \).

Proof. We consider a sequence \((\alpha_p) \subseteq [0, 1] \) such that \(\alpha_p \to \alpha \), \(\alpha \in [0, 1] \). Since \(F(w) \in \mathbb{E}^n \), it follows that \(L_{\alpha_p} \Gamma(w) \to L_\alpha \Gamma(w) \) for all \(w \in \Omega \) as \(p \to \infty \). Thus, we deduce that for all \(w \in \Omega \), \(\Gamma_{\alpha_p}(w) \to \Gamma_\alpha(w) \) as \(p \to \infty \). Moreover, being \(\Gamma \) integrably bounded, we conclude that each \(\Gamma_{\alpha_p} \) is also integrably bounded, and if \(f \in L^1(\Omega, \mathbb{E}^n) \) is such that for all \(\alpha \in \Gamma_0(w): \|x\| \leq f(w) \), we also conclude that \(\sup_{p \geq 1} \{\|x\| \mid x \in \Gamma_{\alpha_p}(w)\} \leq f(w) \). Consequently, using Theorem 4.3, we have \(\{\Gamma_{\alpha_p}\} \to \{\Gamma_\alpha\} \) as \(p \to \infty \). In other words, \(L_{\alpha_p} \Gamma = L_\alpha \Gamma \) as \(p \to \infty \), and therefore \(\{\Gamma\} \subseteq \mathbb{E}^n \).

Corollary 4.7. Let \(\Gamma_\alpha: \Omega \to \mathbb{E}^n \) be an integrably bounded fuzzy random variable. Then \(\int \Gamma_\alpha \to \int \Gamma \) on \((\mathbb{E}^n, D) \leftrightarrow s_{|f_{\alpha_p}} \to s_{|f} \) on \(C([0, 1] \times S^{n-1}), \|\cdot\|_\infty \).

Also, we have
Theorem 4.8. Let $\Gamma: \Omega \to \mathbb{E}^n_C$ be an integrably bounded fuzzy random variable. Then,

$$s_{\Gamma}(x, x) = \int s_{\Gamma(x)}(x, x) \, d\mu(w).$$

Proof. It follows immediately from Theorem 4.4. In fact,

$$s_{\Gamma}(x, x) = s_{L_{\Gamma}}(x) = s_{L_{\Gamma}}(x) = \int s_{\Gamma(x)}(x) \, d\mu(w) = \int s_{\mu}(x, x) \, d\mu(w).$$

Remark 4.9. It is well known that if $A \in \mathcal{K}(\mathbb{R}^n)$ then

$$A = \bigcap_{y \in S^{n-1}} \{ x \in \mathbb{R}^n | \langle x, y \rangle \leq s_A(y) \},$$

see [2] or [4].

If we apply this in the fuzzy context, we have that if $u \in E^p_C$, then for each $x \in [0, 1]$

$$L_x u = \bigcap_{y \in S^{n-1}} \{ x \in \mathbb{R}^n | \langle x, y \rangle \leq s_u(x, x) \}.$$

Thus, given some relations involving fuzzy sets in E^p_C, we obtain the corresponding relations for the fuzzy support function s_u. On the other hand, from relations involving fuzzy support functions s_u we can obtain analogous relations for the z-level of the fuzzy set $u \in E^p_C$ and, consequently, for u. Thus, we can apply the duality theory between support functions and $\mathcal{K}(\mathbb{R}^n)$ in the fuzzy context.

Remark 4.10. For related results see [11].

Acknowledgements

We thank the anonymous referee for his valuable comments on the final version of the paper and for indicating these references [1, 5, 11, 12].

References

